EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间机器人双臂捕获卫星力学分析及镇定控制

程靖 陈力

程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制[J]. 力学学报, 2016, 48(4): 832-842. doi: 10.6052/0459-1879-16-156
引用本文: 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制[J]. 力学学报, 2016, 48(4): 832-842. doi: 10.6052/0459-1879-16-156
Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. doi: 10.6052/0459-1879-16-156
Citation: Cheng Jing, Chen Li. MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 832-842. doi: 10.6052/0459-1879-16-156

空间机器人双臂捕获卫星力学分析及镇定控制

doi: 10.6052/0459-1879-16-156
基金项目: 国家自然科学基金(11372073,11072061) 和福建省工业机器人基础部件技术重大研发平台(2014H21010011) 资助项目.
详细信息
    通讯作者:

    陈力,教授,主要研究方向:空间机器人系统动力学与控制.E-mail:chnle@fzu.edu.cn

  • 中图分类号: TP241

MECHANICAL ANALYSIS AND CALM CONTROL OF DUAL-ARM SPACE ROBOT FOR CAPTURING A SATELLITE

  • 摘要: 随着航天技术的发展,空间机器人要求具有对非合作卫星的在轨捕获能力. 双臂空间机器人与单臂空间机器人相比在这方面显然更具有优势. 然而由于太空环境的复杂性,使得空间机器人双臂捕获非合作卫星操作过程的动力学与控制问题表现出下述特点:非完整动力学约束,动量、动量矩与能量传递变化,捕获前后结构开、闭环变拓扑,与闭环接触几何、运动学约束多者共存. 因此空间机器人双臂捕获卫星技术相关动力学与控制问题变得极其复杂. 为此,讨论了双臂空间机器人捕获自旋卫星过程的动力学演化模拟,以及捕获操作后其不稳定闭链混合体系统的镇定控制问题. 首先,利用拉格朗日第二类方程建立了捕获操作前双臂空间机器人的开环系统动力学模型,利用牛顿-欧拉法建立了目标卫星的系统动力学模型;在此基础上基于动量守恒定律、力的传递规律,经过积分与简化处理分析、求解了双臂空间机器人捕获目标卫星后受到的碰撞冲击效应,给出了合适的捕获操作策略. 根据闭链系统的闭环约束几何及运动学关系获得了闭合链约束方程,推导了捕获操作后闭链混合体系统的动力学方程. 最后基于该动力学方程针对捕获操作结束后失稳的闭链混合体系统,设计了镇定运动模糊H 控制方案. 提出的方案利用模糊逻辑环节克服参数不确定影响,由H 鲁棒控制项消除逼近误差来保证系统控制精度;通过最小权值范数法分配各臂关节力矩,以保证两臂协同操作. 李雅普诺夫稳定性理论证明了系统的全局稳定性. 最后通过数值仿真实验模拟、分析了碰撞冲击响应,并验证了上述镇定运动控制方案的有效性.

     

  • 1 Abad AF, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68: 1-26  
    2 Yoshida K, Nakanishi H, Ueno N, et al. Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite. Advanced Robotics, 2004, 2(2): 175-198
    3 Walker MW. Adaptive control of space-based robot manipulators. IEEE Transactions on Robotics and Automation, 1992, 7(6): 828-835
    4 谢立敏, 陈力. 漂浮基柔性空间机器人的鲁棒控制及振动抑制. 力学学报, 2012, 44(3): 1057-1065 (Xie Limin, Chen Li. Robust control and vibration suppression of free-floating flexible space robot. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 1057-1065 (in Chinese))
    5 Narikiyo T, Ohmiya M. Control of a planar space robot: Theory and experiments. Control Engineering, 2006, 8(14): 875-883
    6 程靖, 陈力. 漂浮基空间机器人捕获卫星过程冲击动力学建模及基于非线性滤波器的镇定运动控制. 载人航天, 2016, 22(1): 34-38 (Cheng Jing, Chen Li. Impact dynamic calming control based on nonlinear filter for free-floating space robot capturing a satellite. Manned Spaceflight, 2016, 22(1): 34-38 (in Chinese))
    7 王靖森, 刘晓峰, 段柳成等. 考虑关节摩擦的空间机器人动力学建模与参数辨识. 力学季刊, 2015, 36(44): 594-601 (Wang Jingsen, Liu Xiaofeng, Duan Liucheng, et al. Dynamic modeling and parameter identification of a space robot considering joint friction. Chinese Quarter of Mechanics, 2015, 36(44): 594-601 (in Chinese))
    8 戈新生, 孙鹏伟. 自由漂浮空间机械臂非完整运动规划的粒子群优化算法. 机械工程学报, 2007, 43(4): 34-38 (Ge Xinsheng, Sun Pengwei. Nonholonomic motion planning of space manipulator system using particle swarm optimization. Chinese Journal of Mechanical Engineering, 2007, 43(4): 34-38 (in Chinese))
    9 Dubanchet V, Saussie D, Alazard D, et al. Modeling and control of a space robot for active debris removal. CEAS Space Journal, 2015, 7(2): 203-218  
    10 Chen J, Chen L. Decentralized adaptive neural network stabilization control and vibration suppression of flexible robot manipulator during capture a target.//The 66rd International Astronautical Congress. Jerusalem, 2015
    11 Oki T, Nakanishi H, Youshida K. Whole-body motion control for capturing a tumbling target by a free-floating space robot.//Proceeding of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA: IEEE, 2007: 2256-2261
    12 Rekleitis, G, Papadopoulos E. On orbit cooperating space robotic servicers handling a passive object. IEEE Transaction on Aerospace and Electronic System, 2015, 51(2): 803-814
    13 Debus TJ, Dougherty SP. Overview and performance of the frontend robotics enabling near-term demonstration (FREND) robotic arm. In: AIAA Infotech and Aerospace Conference. Seattle, Washington, USA: AIAA, 2009: 2009-1870
    14 Barnhart D, Sullivan B, Hunter R, et al. Phoenix Program Status-2013. In: AIAA Space 2013 Conference and Exposition, San Diego, CA: AIAA, 2013: 1-17
    15 Reintsema D, Thaeter J, Rathke A, et al. DEOS-the German robotics approach to secure and de-orbit malfunctioned satellites from low earth orbit.//The 10th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Sapporo, Japan, 2010: 244-251
    16 Kaiser C, Berg F, Delcura JM, et al. SMART-OLEV-An orbit life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronautica, 2008, 63: 400-410  
    17 Sachdev S, Marcotte B, Gibbs G. Canada and the international space station program: overview and status.//International Astronautical Federation-55th International Astronautical Congress 2004. Paris, France: IAF, 2004: 7405-7415
    18 Afanasiev V, Braigozin D, Kazanski I, et al. RTR-trees for robotics behavior simulation and visualization. Visual Computer, 2007, 23(2): 347-358
    19 Quiocho LJ, Huynh A, Edwin Z. Application of multibody dynamics to on-orbit manipulator simulations.//ASME 2005 International Design Engineering Technical Conferences. Long Beach, California: ASME. 2005: 81-87
    20 Obermark J, Greamer G, Kelm BE, et al. SUMO/FREND: vision system for autonomous satellite grapple.//Proceeding of SPIESensor and System for Space Applications. Orlando, Florida: SPIE, 2007: 65550Y-1–65550Y-11
    21 Rathee R, Pathak P. Dual arm free flying space robot trajectory planning using polynomial. Journal of Robotics, 2015: 1-11
    22 梁捷, 陈力. 基于标称计算力矩控制器的双臂空间机器人惯性空间轨迹跟踪的模糊自适应补偿控制. 工程力学, 2010, 27(11): 221-228. (Liang Jie, Chen Li. Fuzzy logic adaptive compensation control for duan-arm space robot based on computed torque control to track desired trajectory in inertia space. Enigieering Mechanics, 2010, 27(11): 221-228 (in Chinese))
    23 陈志勇, 陈力. 具有外部扰动及不确定载荷参数双臂空间机器人的拟增广鲁棒与自适应混合控制. 工程力学, 2010, 27(12): 27-33. (Chen Zhiyong, Chen Li. Robusted-adaptive combined control for dual-arm space robot with external disturbances and uncertain parameters. Engineering Mechanics, 2010, 27(12): 27-33 (in Chinese))
    24 Takahashi R, Ise H, Sato D, et al. Hybrid simulation of a dual-arm space robot colliding with a floating object. In: Proceeding of the 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 1202-1206
    25 Shah SV, Sharf I, Misra AK. Reactionless path planning strategies for capture of tumbling objects in space using a dual-arm robotic system. In: AIAA Guidance, Navigation, and Control (GNC) Conference, Guidance, Navigation, and Control and Co-located Conferences, Boston, MA: AIAA, 2013-4521
    26 郭闻昊, 王天舒. 空间机器人抓捕目标星碰撞前构型优化. 宇航学报, 2015, 36(4), 390-396 (Guo Wenhao, Wang Tianshu. Pre-impact configuration optimization for a space robot capturing target satellite. Journal of Astronautics, 2015, 36(4): 390-396 (in Chinese))
    27 Jia YH, Hu Q, Xu SJ. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta Mechanica Sinica, 2014, 30(1): 112-124  
    28 Moosavian SF, Papadoupoulos E. On the control of space free-flyer using multiple impedance control. In: Proceeding of the 1997 IEEE International Conference on Robotics and Automation. Albuquerque, New Mexico: IEEE, 1997: 853-858
    29 Passino KM. Fuzzy Control. New York: Addison Wesley Longman Press, 1998
    30 Kovacic Z, Bojdan S. Fuzzy Controller Design Theory and Application. Florida: CRC Press, 2005
    31 Wang LX. Stable adaptive fuzzy control of nonlinear systems. IEEE Transaction on Fuzzy Systems, 1993, 1(2): 146-155  
    32 Rubaai A. Direct adaptive fuzzy control design achieving H1 tracking for high performance servo drives. IEEE Transaction on Energy Conversion, 1999, 14(4): 1199-1208  
  • 加载中
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  106
  • PDF下载量:  1903
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-06-13
  • 刊出日期:  2016-07-18

目录

    /

    返回文章
    返回