EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒缺陷相互作用下复合材料的细观损伤模型

付云伟 倪新华 刘协权 张龙 文波

付云伟, 倪新华, 刘协权, 张龙, 文波. 颗粒缺陷相互作用下复合材料的细观损伤模型[J]. 力学学报, 2016, 48(6): 1334-1342. doi: 10.6052/0459-1879-16-152
引用本文: 付云伟, 倪新华, 刘协权, 张龙, 文波. 颗粒缺陷相互作用下复合材料的细观损伤模型[J]. 力学学报, 2016, 48(6): 1334-1342. doi: 10.6052/0459-1879-16-152
Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. doi: 10.6052/0459-1879-16-152
Citation: Fu Yunwei, Ni Xinhua, Liu Xiequan, Zhang Long, Wen Bo. MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1334-1342. doi: 10.6052/0459-1879-16-152

颗粒缺陷相互作用下复合材料的细观损伤模型

doi: 10.6052/0459-1879-16-152
基金项目: 国家自然科学基金资助项目(11272355).
详细信息
    通讯作者:

    倪新华,教授,主要研究方向:复合材料损伤与断裂.E-mail:jxxynxh@163.com

  • 中图分类号: O346

MICRO-DAMAGE MODEL OF COMPOSITE MATERIALS WITH PARTICLE AND DEFECT INTERACTION

  • 摘要: 含尖角的非椭球颗粒附近应力集中较大,诱导缺陷形成裂纹是材料损伤的重要来源.对于强界面颗粒,大刚度颗粒诱导裂纹向基体中扩展形成近似平面片状裂纹,认为诱导裂纹受颗粒应力附近应力场控制,基于有效自洽理论建立了材料细观损伤模型,得到了单向拉伸下的损伤演化,并分析了颗粒形状、尺寸、颗粒性能以及颗粒与初始缺陷相对位置等因素对材料损伤的影响.结果表明,非椭球颗粒更易诱发裂纹,同样外载应力下,损伤程度更大,含非椭球颗粒材料强度更低;含扁平型的颗粒材料裂纹损伤过程更加明显并且材料强度更大;提高颗粒刚度和含量能够增大材料强度.材料中存在尺寸过大或过小的初始裂纹时材料损伤过程不明显.

     

  • 1 Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Royal Soc A, 1957, 241:376-396  
    2 Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusion. Act Metal, 1973, 21:571-574  
    3 Mallick K, Cronin J, Arzberger S. Effect of inclusion morphology on the coefficient of thermal expansion of a filled polymer matrix. AIAA 2006-2098, 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con, Rhode Island, 2006
    4 粱军, 杜善义, 许兴利等. 含缺陷纤维增强复合材料热膨胀系数预报. 哈尔滨工业大学学报, 1997, 29(3):36-38(Liang Jun, Du Shanyi, Xu Xingli, et al. Thermal expansion coefficients of fiber composite materials containing matrix microcracks. Journal of Harbin Institute of Technology,1997, 29(3):36-38(in Chinese))
    5 Teng H. Stiffness properties of particulate composites containing debonded particles. Int J Solids Struct, 2010, 47:2191-2200  
    6 付云伟, 刘协权, 倪新华等. 含固有缺陷复合材料有效弹性性能预报. 机械工程学报, 2012, 48(6):46-51(Fu Yunwei, Liu Xiequan, Ni Xinhua, et al. Effective elastic property prediction of ceramic composite with inherent defect. J Mech Engng, 2012, 48(6):46-51(in Chinese))
    7 Sridhar N, Rickman JM, Srolovitz DJ. Effect of reinforcement morphology on matrix microcracking. Acta Mater, 1996, 44(3):915-925  
    8 Mura T. Micromechanics of Defects in Solids. 2nd edn. Dordrecht:Martinus NijhoffPublishers, 1987
    9 郭荣鑫, Lormand G, 李俊昌. 夹杂物问题应力场的数值计算. 昆明理工大学学报(理工版), 2004, 29(3):51-55(Guo Rongxin, Lormand G, Li Junchang. Numerical Calculation of the Stress field for the inclusion problem. Journal of Kunming University of Science and Technology (Science and Technology), 2004, 29(3):51-55(in Chinese))
    10 Lee HK, Pyo SH. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Composites Science and Technology, 2008, 68:387-397  
    11 Qu J. Eshelby tensor for an elastic inclusion with slightly weakened interfaces. Journal of Applied Mechanics, 1993, 60(4):1048-1050  
    12 Bian LC,Wang Q. Influence of the particle size and volume fraction on micro-damage of the composites. Arch Appl Mech, 2012, 83:445-454
    13 Wilkinson DS, Pompe W, Oeschner M. Modeling the mechanical behaviour of heterogeneous multi-phase materials. Prog Mech Sci, 2001, (46):379-405  
    14 Shodja HM. Shokrolahi-Zadeh B. Ellipsoidal domains:piecewise nonuniform and impotent eigenstrain fields. J Elasticity, 2007, 86:1-18
    15 Bonfoh N, Hounkpati V, Sabar H. New micromechanical approach of the coated inclusion problem:Exact solution and applications. Comp Mat Sci, 2012, 62:175-183  
    16 Jasiuk I, Tsuchida E, Mura T. The sliding inclusion under shear. Int. J. Solids Struct, 1987, 23(10):1373-1385  
    17 Mura T, Jasiuk I, Tsuchida B. The stress field of a sliding inclusion. Int J Solids Struct, 1985, 21(12):1165-1179  
    18 Xu BX, Mueller R, Wang MZ. The Eshelby property of sliding inclusions. Arch Appl Mech, 2011, 81:19-35  
    19 Sauer R, Wang AG, Li S. The composite Eshelby tensors and their applications to homogenization. Acta Mech, 2008, 197:63-96  
    20 Kang H, Milton GW. Solutions to the Pólya-Szegö conjecture and the weak Eshelby conjecture. Arch Ration Mech An, 2008, 188(1):93-116  
    21 Liu LP. Solutions to the Eshelby conjectures. P Ro Soc Edinb A, 2008, 464:573-594  
    22 Zou WN. Limitation of average Eshelby tensor and its application in analysis of ellipse approximation. Acta Mech Solida Sinica, 2001, 24(2):176-184
    23 Han AL, Gan BS, Setiawan Y. The influence of single inclusions to the crack initiation, propagation and compression strength of mortar. Procedia Engineering, 2014, 95:376-385  
    24 Williams JJ, Segurado J, LLorca J, et al. Three dimensional (3D) microstructure-based modeling of interfacial decohesion in particle reinforced metal matrix composites. Materials Science & Engineering A, 2012, 557:113-118  
    25 郝圣旺, 孙菊. 非均质脆性材料灾变破坏的一种敏感前兆. 力学学报, 2008, 40(3):339-344(Hao Shengwang, Sun Ju. A sensitive precursor to catastrophic failure in heterogeneous brittle materials. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(3):339-344(in Chinese))
    26 Tan H, Huang Y, Liu C, et al. The uniaxial tension of particulate composite materials with nonlinear interface debonding. Int J Solids Struct, 2007, 44:1809-1822  
    27 Ju JW, Lee HK. A micromechanical damage model for effective elastoplastic behavior of partially debonded ductile matrix composites. Int J Solids Struct, 2001, 38:6307-6332  
    28 Chen JK,Wang GT, Yu ZZ, et al. Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 2010, 70:861-872  
    29 付云伟, 张龙, 倪新华等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析. 力学学报, 2016, 48(1):154-162(Fu Yunwei, Zhang Long, Ni Xinhua, et al. Interface cracking analysis with inclusions interaction in composite ceramic. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):154-162(in Chinese))
    30 Meng QH, Wang ZQ. Prediction of interfacial strength and failure mechanisms in particle-reinforced metal-matrix composites based on a micromechanical model. Engineering Fracture Mechanics, 2015, 142(1):170-183
    31 McNamara D, Alveen P, Carolan D, et al. Numerical analysis of the strength of polycrystalline diamond as a function of microstructure. International Journal of Refractory Metals and Hard Materials, 2015, 52(1):195-202
    32 Rodin GJ. Eshelby's inclusion problem for polygons and polyhedra. J Mech Phys Solids, 1996, 44(12):1977-1995  
    33 Chen QD, Xu K, Pan YE. Inclusion of an arbitrary polygon with graded eigenstrain in an anisotropic piezoelectric half plane. J Mech Phys Solids, 2014, 51(2):53-62
    34 Lee YG, Zou WN, Ren HH. Eshelby's problem of inclusion with arbitrary shape in an isotropic elastic half-plane. J Mech Phys Solids, 2016, 81(1):399-410
    35 Liu MQ, Gao XL. Strain gradient solution for the Eshelby-type polygonal inclusion problem. J Mech Phys Solids, 2013, 50(2):328-338
    36 Huang NC, Korobeinik MY. Interfacial debonding of a spherical inclusion embedded in an infinite medium under remote stress. International Journal of Fracture, 2001, 107:11-30  
    37 Sridhar N, Rickman J, Srolovitz M. Effect of reinforcement morphology on matrix microcracking. Acta Mater, 1996, 44(3):915-925  
    38 Ju JW, Lee HK. A micromechanical damage model for effective elastoplasttic behavior of partially debonded ductile matrix composites. Int J Solids Struct, 2001, 38:6307-6332  
    39 Zhou R, Li Z, Sun J. Crack deffection and interface debonding in composite materials elucidated by the configuration force theory. Composites:Part B, 2011, 42:1999-2003  
    40 Knight MG, Wrobel JL, Henshall JL, et al. A study of the interaction between a propagating crack and an uncoated/coated elastic inclusion using the BE technique. International Journal of Fracture, 2002, 114:47-61  
    41 Zheng QS, Du DX. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids, 2001, 49(11):2765-2788  
    42 Nozaki H, Taya M. Elastic fields in a polygon-shaped inclusion with uniform eigenstrains. ASME J Appl Mech, 1997, 64, 495-502  
    43 Xu BX,Wang MZ. Special properties of Eshelby tensor for a regular polygonal inclusion. Acta Mech Sinica, 2005, 21(3):267-271  
    44 Huang MJ, Wu P, Guan GY, et al. Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion. Acta Mech, 2011, 217(1-2):17-38  
  • 加载中
计量
  • 文章访问数:  789
  • HTML全文浏览量:  71
  • PDF下载量:  868
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-02
  • 修回日期:  2016-08-03
  • 刊出日期:  2016-11-18

目录

    /

    返回文章
    返回