1 Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224
|
2 Bendsoe MP, Sigmund O. Topology Optimization:Theory, Methods and Applications. Springer Science & Business Media, 2003
|
3 Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5):885-896
|
4 Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1):227-246
|
5 Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1):363-393
|
6 Belytschko T, Xiao SP, Parimi C. Topology optimization with implicit functions and regularization. International Journal for Numerical Methods in Engineering, 2003, 57(8):1177-1196
|
7 De Ruiter MJ, Van Keulen F. Topology optimization using a topology description function. Structural and Multidisciplinary Optimization, 2004, 26(6):406-416
|
8 郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优化方法. 力学学报, 2004, 36(5):520-526(Guo Xu, Zhao Kang. A new topology description function based approach for structural topology optimization. Chinese Journal of Theoretical Applied Mechanics, 2004, 36(5):526-531(in Chinese))
|
9 隋允康, 彭细荣. 结构拓扑优化ICM方法的改善. 力学学报, 2005, 37(2):190-198(Sui Yongkang, Peng Xirong. The improvement for the ICM method of structural topology optimization. Chinese Journal of Theoretical Applied Mechanics, 2005, 37(2):190-198(in Chinese))
|
10 Sui YK, Peng XR. The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mechanica Sinica, 2006, 22(1):68-75
|
11 Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8):081009
|
12 Zhang W, Yuan J, Zhang J, et al. A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Structural & Multidisciplinary Optimization, 2015:1-18
|
13 Turteltaub S, Washabaugh P. Optimal distribution of material properties for an elastic continuum with structure-dependent body force. International Journal of Solids & Structures, 1999, 36(30):4587-4608
|
14 Bruyneel M, Duysinx P. Note on topology optimization of continuum structures including self-weight. Structural & Multidisciplinary Optimization, 2005, 29(4):245-256
|
15 Yang XY, Xie YM, Steven GP. Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Computers & Structures, 2005, 83(12-13):956-963
|
16 Ansola R, Canales J, Tárrago JA. An effcient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads. Finite Elements in Analysis & Design, 2006, 42(14):1220-1230
|
17 Xu H, Guan L, Chen X, et al. Guide-Weight method for topology optimization of continuum structures including body forces. Finite Elements in Analysis and Design, 2013, 75:38-49
|
18 高彤, 张卫红, 朱继宏. 惯性载荷作用下结构拓扑优化. 力学学报, 2009, 41(4):530-541(Gao Tong, Zhang Weihong, Zhu Jihong. Structural topology optimization under inertial loads. Chinese Journal of Theoretical Applied Mechanics, 2009, 41(4):530-541(in Chinese))
|
19 张晖, 刘书田, 张雄. 考虑自重载荷作用的连续体结构拓扑优化. 力学学报, 2009, 41(1):98-104(Zhang Hui, Liu Shutian, Zhang Xong. Topology optimization of continuum structures subjected to self-weight loads. Chinese Journal of Theoretical Applied Mechanics, 2009, 41(1):98-104(in Chinese))
|
20 Huang X, Xie YM. Evolutionary topology optimization of continuum structures including design-dependent self-weight loads. Finite Elements in Analysis & Design, 2011, 47(8):942-948
|
21 Holmberg E, Thore CJ, Klarbring A.Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Structural and Multidisciplinary Optimization, 2015, 52(5):915-928
|
22 Chang C, Chen A. The gradient projection method for structural topology optimization including density-dependent force. Structural and Multidisciplinary Optimization, 2014, 50(4):645-657
|
23 Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39):4135-4195
|
24 Wang X, Zhu X, Hu P. Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions. International Journal of Mechanical Sciences, 2015, 104:190-199
|
25 张汉杰, 王东东, 轩军厂. 薄梁板结构NURBS几何精确有限元分析. 力学季刊, 2010, 31(4):469-477(Zhang Hanjie, Wang Dongdong, Xuan Junchang. Non-uniform rational B spline-based isogeometric finite element analysis of thin beams and plates. Chinese Quarterly of Mechanics, 2010, 31(4):469-477(in Chinese))
|
26 尹硕辉, 余天堂, 刘鹏. 基于等几何有限元法的功能梯度板自由振动分析. 振动与冲击, 2013, 32(24):180-186(Yin Shuohui, Yu Tiantang, Liu Peng. Free vibration analysis of functionally graded plates using isogeometric finite element method. Journal of Vibration & Shock, 2013, 32(24):180-186(in Chinese))
|
27 蔡守宇, 张卫红, 李杨. 基于面片删减的带孔结构等几何形状优化方法. 机械工程学报, 2013, 49(13):150-157(Cai Shouyu, Zhang Weihong, Li Yang. Isogeometric shape optimization method with patch removal for holed structures. Journal of Mechanical Engineering, 2013, 49(13):150-157(in Chinese))
|
28 Hassani B, Khanzadi M, Tavakkoli SM. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and Multidisciplinary Optimization, 2012, 45(2):223-233
|
29 Qian X. Topology optimization in B-spline space. Computer Methods in Applied Mechanics & Engineering, 2013, 265(3):15-35
|
30 Wang M, Qian X. Efficient filtering in topology optimization via B-splines. Journal of Mechanical Design, 2015, 137(3):V02BT03A011
|
31 Piegl L, Tiller W. The NURBS Book. 2nd. 1997
|
32 Svanberg K. The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373
|