EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑结构自重的基于NURBS插值的3D拓扑描述函数法

王选 胡平 祝雪峰 盖赟栋

王选, 胡平, 祝雪峰, 盖赟栋. 考虑结构自重的基于NURBS插值的3D拓扑描述函数法[J]. 力学学报, 2016, 48(6): 1437-1445. doi: 10.6052/0459-1879-16-145
引用本文: 王选, 胡平, 祝雪峰, 盖赟栋. 考虑结构自重的基于NURBS插值的3D拓扑描述函数法[J]. 力学学报, 2016, 48(6): 1437-1445. doi: 10.6052/0459-1879-16-145
Wang Xuan, Hu Ping, Zhu Xuefeng, Gai Yundong. TOPOLOGY DESCRIPTION FUNCTION APPROACH USING NURBS INTERPOLATION FOR 3D STRUCTURES WITH SELF-WEIGHT LOADS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1437-1445. doi: 10.6052/0459-1879-16-145
Citation: Wang Xuan, Hu Ping, Zhu Xuefeng, Gai Yundong. TOPOLOGY DESCRIPTION FUNCTION APPROACH USING NURBS INTERPOLATION FOR 3D STRUCTURES WITH SELF-WEIGHT LOADS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1437-1445. doi: 10.6052/0459-1879-16-145

考虑结构自重的基于NURBS插值的3D拓扑描述函数法

doi: 10.6052/0459-1879-16-145
基金项目: 国家自然科学基金(11272075,11302041)和中央高校基本科研业务费专项(DUT15RC(4)36)资助项目.
详细信息
    通讯作者:

    胡平,教授,主要研究方向:固体力学和车辆工程.E-mail:pinghu@dlut.edu.cn

  • 中图分类号: O343.2

TOPOLOGY DESCRIPTION FUNCTION APPROACH USING NURBS INTERPOLATION FOR 3D STRUCTURES WITH SELF-WEIGHT LOADS

  • 摘要: 在许多如大坝、桥梁等大型土木工程结构中,结构的自重是初始设计阶段必须考虑的重要载荷之一,因此研究自重载荷作用下的结构拓扑优化设计问题具有十分重要的意义.针对考虑自重载荷作用的拓扑优化问题所面临的主要困难,总结了现有处理考虑自重载荷的拓扑优化问题的三类主要方法;提出一种基于非均匀有理B样条(non-uniform rational B-splines,NURBS)基函数插值的拓扑描述函数方法,基于此方法研究了考虑设计依赖自重载荷作用的2D/3D结构优化设计问题.在列式下,高阶NURBS基函数被同时用于三维NURBS实体片中的几何场、位移场及设计变量场插值,实现了几何模型、分析模型和优化模型的有效统一,确保了位移场及设计变量场的高阶连续性;详细推导了基于NURBS基函数插值的考虑自重载荷作用的三维结构拓扑优化模型及其灵敏度列式,并采用移动渐进线方法(method of moving asymptotes,MMA)进行了优化求解;多个算例验证了方法的有效性和稳定性,结果表明,优化迭代过程稳健,收敛快,能够有效地克服自重载荷作用下连续体结构拓扑优化中经常遇到的低密度区域材料的寄生效应及目标函数的非单调性等问题.

     

  • 1 Bendsøe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224  
    2 Bendsoe MP, Sigmund O. Topology Optimization:Theory, Methods and Applications. Springer Science & Business Media, 2003
    3 Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Computers & Structures, 1993, 49(5):885-896  
    4 Wang MY, Wang X, Guo D. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1):227-246
    5 Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004, 194(1):363-393  
    6 Belytschko T, Xiao SP, Parimi C. Topology optimization with implicit functions and regularization. International Journal for Numerical Methods in Engineering, 2003, 57(8):1177-1196  
    7 De Ruiter MJ, Van Keulen F. Topology optimization using a topology description function. Structural and Multidisciplinary Optimization, 2004, 26(6):406-416  
    8 郭旭, 赵康. 基于拓扑描述函数的连续体结构拓扑优化方法. 力学学报, 2004, 36(5):520-526(Guo Xu, Zhao Kang. A new topology description function based approach for structural topology optimization. Chinese Journal of Theoretical Applied Mechanics, 2004, 36(5):526-531(in Chinese))
    9 隋允康, 彭细荣. 结构拓扑优化ICM方法的改善. 力学学报, 2005, 37(2):190-198(Sui Yongkang, Peng Xirong. The improvement for the ICM method of structural topology optimization. Chinese Journal of Theoretical Applied Mechanics, 2005, 37(2):190-198(in Chinese))
    10 Sui YK, Peng XR. The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mechanica Sinica, 2006, 22(1):68-75  
    11 Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8):081009  
    12 Zhang W, Yuan J, Zhang J, et al. A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Structural & Multidisciplinary Optimization, 2015:1-18
    13 Turteltaub S, Washabaugh P. Optimal distribution of material properties for an elastic continuum with structure-dependent body force. International Journal of Solids & Structures, 1999, 36(30):4587-4608  
    14 Bruyneel M, Duysinx P. Note on topology optimization of continuum structures including self-weight. Structural & Multidisciplinary Optimization, 2005, 29(4):245-256  
    15 Yang XY, Xie YM, Steven GP. Evolutionary methods for topology optimisation of continuous structures with design dependent loads. Computers & Structures, 2005, 83(12-13):956-963
    16 Ansola R, Canales J, Tárrago JA. An effcient sensitivity computation strategy for the evolutionary structural optimization (ESO) of continuum structures subjected to self-weight loads. Finite Elements in Analysis & Design, 2006, 42(14):1220-1230
    17 Xu H, Guan L, Chen X, et al. Guide-Weight method for topology optimization of continuum structures including body forces. Finite Elements in Analysis and Design, 2013, 75:38-49  
    18 高彤, 张卫红, 朱继宏. 惯性载荷作用下结构拓扑优化. 力学学报, 2009, 41(4):530-541(Gao Tong, Zhang Weihong, Zhu Jihong. Structural topology optimization under inertial loads. Chinese Journal of Theoretical Applied Mechanics, 2009, 41(4):530-541(in Chinese))
    19 张晖, 刘书田, 张雄. 考虑自重载荷作用的连续体结构拓扑优化. 力学学报, 2009, 41(1):98-104(Zhang Hui, Liu Shutian, Zhang Xong. Topology optimization of continuum structures subjected to self-weight loads. Chinese Journal of Theoretical Applied Mechanics, 2009, 41(1):98-104(in Chinese))
    20 Huang X, Xie YM. Evolutionary topology optimization of continuum structures including design-dependent self-weight loads. Finite Elements in Analysis & Design, 2011, 47(8):942-948  
    21 Holmberg E, Thore CJ, Klarbring A.Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Structural and Multidisciplinary Optimization, 2015, 52(5):915-928  
    22 Chang C, Chen A. The gradient projection method for structural topology optimization including density-dependent force. Structural and Multidisciplinary Optimization, 2014, 50(4):645-657  
    23 Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39):4135-4195
    24 Wang X, Zhu X, Hu P. Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions. International Journal of Mechanical Sciences, 2015, 104:190-199  
    25 张汉杰, 王东东, 轩军厂. 薄梁板结构NURBS几何精确有限元分析. 力学季刊, 2010, 31(4):469-477(Zhang Hanjie, Wang Dongdong, Xuan Junchang. Non-uniform rational B spline-based isogeometric finite element analysis of thin beams and plates. Chinese Quarterly of Mechanics, 2010, 31(4):469-477(in Chinese))
    26 尹硕辉, 余天堂, 刘鹏. 基于等几何有限元法的功能梯度板自由振动分析. 振动与冲击, 2013, 32(24):180-186(Yin Shuohui, Yu Tiantang, Liu Peng. Free vibration analysis of functionally graded plates using isogeometric finite element method. Journal of Vibration & Shock, 2013, 32(24):180-186(in Chinese))
    27 蔡守宇, 张卫红, 李杨. 基于面片删减的带孔结构等几何形状优化方法. 机械工程学报, 2013, 49(13):150-157(Cai Shouyu, Zhang Weihong, Li Yang. Isogeometric shape optimization method with patch removal for holed structures. Journal of Mechanical Engineering, 2013, 49(13):150-157(in Chinese))
    28 Hassani B, Khanzadi M, Tavakkoli SM. An isogeometrical approach to structural topology optimization by optimality criteria. Structural and Multidisciplinary Optimization, 2012, 45(2):223-233  
    29 Qian X. Topology optimization in B-spline space. Computer Methods in Applied Mechanics & Engineering, 2013, 265(3):15-35
    30 Wang M, Qian X. Efficient filtering in topology optimization via B-splines. Journal of Mechanical Design, 2015, 137(3):V02BT03A011
    31 Piegl L, Tiller W. The NURBS Book. 2nd. 1997
    32 Svanberg K. The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373  
  • 加载中
计量
  • 文章访问数:  1112
  • HTML全文浏览量:  72
  • PDF下载量:  834
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-27
  • 修回日期:  2016-08-04
  • 刊出日期:  2016-11-18

目录

    /

    返回文章
    返回