EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向连续体拓扑优化的多样性设计求解方法

王博 周演 周鸣

王博, 周演, 周鸣. 面向连续体拓扑优化的多样性设计求解方法[J]. 力学学报, 2016, 48(4): 984-993. doi: 10.6052/0459-1879-15-441
引用本文: 王博, 周演, 周鸣. 面向连续体拓扑优化的多样性设计求解方法[J]. 力学学报, 2016, 48(4): 984-993. doi: 10.6052/0459-1879-15-441
Wang Bo, Zhou Yan, Zhou Yiming. MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 984-993. doi: 10.6052/0459-1879-15-441
Citation: Wang Bo, Zhou Yan, Zhou Yiming. MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 984-993. doi: 10.6052/0459-1879-15-441

面向连续体拓扑优化的多样性设计求解方法

doi: 10.6052/0459-1879-15-441
基金项目: “973”计划(2014CB049000) 和国家自然科学基金(11372062, 11402049) 资助项目.
详细信息
    通讯作者:

    王博,教授,主要研究方向:结构与多学科优化、结构拓扑优化、航天先进材料与结构设计.E-mail:wangbo@dlut.edu.cn

  • 中图分类号: O302;O342

MULTIPLE DESIGNS APPROACH FOR CONTINUUM TOPOLOGY OPTIMIZATION

  • 摘要: 拓扑优化可以在概念设计阶段为工业产品结构的概念设计提供新颖的设计思路. 传统的连续体结构拓扑优化方法通常只能获得一个优化的拓扑构型,但在实际工程应用中,这个构型在后续设计阶段可能会由于分析模型逐步细化、设计要求的进一步明确而无法满足改变后的设计目标和约束. 针对此问题,提出了多样性设计求解方法(multiple designs approach,MDA),使得能够在优化过程中获得若干个多样性设计,以此减少在可能在设计初期由于信息不完整所带来的风险. 给出MDA 基本的优化列式,将目标函数定义为多个设计构型的目标性能加权之和,并通过加入对多样性度量的约束条件,在优化过程中驱动各个设计产生几何构型上差异. 给出了一种具体的多样性度量方法,并对其物理意义和特征进行描述和讨论. 以基于变密度法的最小柔顺性问题作为优化算例,给出了具体的优化列式及敏度推导. 在算例中,研究了目标函数和约束中不同参数对结果的影响,并对目标函数之外的其他潜在结构性能进行了讨论和比较. 结果表明,通过MDA 能够有效地给出一批多样性设计构型,为后续的精细化设计提供多种设计方案和思路.

     

  • 1 Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224  
    2 Bendsoe MP. Optimization of Structural Topology, Shape, and Material. Springer, 1995
    3 Zhou M, Rozvany GIN. The coc algorithm, part ii: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336  
    4 Bendsoe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. Springer Science & Business Media, 2003
    5 Olhoff N, Bendsoe MP, Rasmussen J. On cad-integrated structural topology and design optimization. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 259-279  
    6 Tang PS, Chang KH. Integration of topology and shape optimization for design of structural components. Structural and Multidisciplinary Optimization, 2001, 22(1): 65-82  
    7 牛飞, 王博, 程耿东. 基于拓扑优化技术的集中力扩散结构设计. 力学学报, 2012, 44(3): 528-536(Niu Fei, Wang Bo, Cheng Gengdong. Optimum topology design of structural part for concentration force transmission. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 528-536(in Chinese))
    8 王劭伯, 吕勇哉. 多目标动态规划及其在过程优化中的应用. 系统工程理论与实践, 1986(04): 19-25 (Wang Shaobo, Lü Yongzai. Multi-objective dynamic programming and application in process optimization. Systems Engineering-theory & Practice, 1986(04): 19-25 (in Chinese))
    9 Grandhi RV, Bharatram G, Venkayya VB. Multiobjective optimization of large-scale structures. AIAA Journal, 2012, 31(7): 1329-1337
    10 张连文, 夏人伟. Pareto 最优解及其优化算法. 北京航空航天大学学报, 1997, 23(2): 206-211 (Zhang Lianwen, Xia Renwei. Pareto optimal solution and optimization method. Journal of Beijing University of Aeronautics and Astronautics, 1997, 23(2): 206-211(in Chinese))
    11 Chen TY, Wu SC. Multiobjective optimal topology design of structures. Computational Mechanics, 1998, 21(6): 483-492  
    12 李兆坤, 张宪民, 陈金英等. 柔顺机构几何非线性多目标拓扑优化设计. 机械强度, 2011, 33(4): 548-553 (Li Zhaokun, Zhang Xiaomin, Chen Jinying, et al. Multiobjective topology optimization of compliant mechanisms with geometrical nonlinearity. Journal of Mechanical Strength, 2011, 33(4):548-553(in Chinese))
    13 程耿东, 张东旭. 受应力约束的平面弹性体的拓扑优化. 大连理工大学学报, 1995, 35(1): 1-9(Cheng Gengdong, Zhang Dongxu. Topological optimization of plane elastic continuum with stress constraints. Journal of Dalian University of Technology, 1995, 35(1): 1-9(in Chinese))
    14 隋允康, 叶红玲, 杜家政. 结构拓扑优化的发展及其模型转化为独立层次的迫切性. 工程力学, 2005, 22(S1): 107-118 (Sui Yunkang, Ye Hongling, Du Jiazheng. Development of structural topological optimization and imminency of its model transformation into independent level. Engineering Mechanics, 2005, 22(S1): 107-118(in Chinese))
    15 Pedersen NL. Maximization of eigenvalues using topology optimization. Structural & Multidisciplinary Optimization, 2000, 20(1): 2-11  
    16 Hoch SJ, Schkade DA. A psychological approach to decision support systems. Management Science, 1996, 42(1): 51-64  
    17 Laguna M, Gort′azar F, Gallego M, et al. A black-box scatter search for optimization problems with integer variables. Journal of Global Optimization, 2014, 58(3): 497-516  
    18 Sharda R, Barr SH, Mcdonnell JC. Decision support system effectiveness: a review and empirical test. Management Science, 1988, 34(2): 139-159  
    19 Williams HP. Model Building in Mathematical Programming, Volume 4. Wiley, 1999
    20 Takriti S, Birge JR, Long E. A stochastic model for the unit commitment problem. IEEE Transactions on Power Systems, 1996, 11(3): 1497-1508  
    21 Villanueva D, Le Riche R, Picard G, et al. Dynamic design space partitioning for optimization of an integrated thermal protection system. ln: The 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Boston, Massachusetts, USA. 2013
    22 Zhou YM, Haftka RT, Cheng GD. Balancing diversity and performance in global optimization. Structural & Multidisciplinary Optimization, 2016
    23 Sigmund O, Maute K. Topology optimization approaches A comparative review. Structural And Multidisciplinary Optimization, 2013, 48(6): 1031-1055  
    24 Giachetti A. Matching techniques to compute image motion. Image and Vision Computing, 2000, 18(3): 247-260  
    25 王勖成. 有限单元法. 清华大学出版社. 2003 (Wang Xucheng. Finite Element Method. Tsinghua University Press, 2003 (in Chinese))
    26 Cook RD, Malkus DS, Plesha ME, et al. Concepts and Applications of Finite Element Analysis, 4th Edition. Wiley, 2001
  • 加载中
计量
  • 文章访问数:  812
  • HTML全文浏览量:  66
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-10
  • 修回日期:  2015-03-21
  • 刊出日期:  2016-07-18

目录

    /

    返回文章
    返回