1 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社,2014 (Li Jie, Wu Jianying, Chen Jianbing. Stochastic Damage Mechanics of Concrete Structures. Beijing: Science Press, 2014 (in Chinese))
|
2 Zhang QB, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mechanics and Rock Engineering, 2014, 47: 1411-1478
|
3 Jones PG, Richart FE. The effect of testing speed on strength and elastic properties of concrete//Proceedings of the American Society for Testing Materials, 1936, 36: 380-392
|
4 Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete. ACI Materials Journal, 1953 49: 729-744
|
5 Hughes BP, Gregory R. Concrete subjected to high rates of loading in compression. Magazine of Concrete Research, 1972, 24: 25-36
|
6 Bischoff PH, Perry SH. Compressive behaviour of concrete at high strain rates. Materials and Structures, 1991, 24: 425-450
|
7 Ross CA, Tedesco JW, Kuennen ST. Effects of strain rate on concrete strength. ACI Materials Journal, 1995, 92-M5: 37-47.
|
8 Klepaczko JR, Brara A. An experimental method for dynamic tensile testing of concrete by spalling. International Journal of Impact Engineering, 2001, 25: 387-409
|
9 Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003, 40: 343-360
|
10 Lu YB, Li QM. About the dynamic uniaxial tensile strength of concrete-like materials. International Journal of Impact Engineering,2011, 38: 171-180
|
11 Al-Salloum Y, Almusallam T, Ibrahim SM, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments. Cement and Concrete Composites, 2015, 55: 34-44
|
12 Liu HF, Ning JG. Mechanical behavior of reinforced concrete subjected to impact loading. Mechanics of Materials, 2009, 41: 1298-1308
|
13 Gary G, Bailly P. Behaviour of quasi-brittle material at high strain rate experiment and modelling. European Journal of Mechanics - A/Solids, 1998, 17: 403-420
|
14 Yan DM, Lin G. Dynamic behavior of concrete in biaxial compression. Magazine of Concrete Research, 2007, 59: 45-52
|
15 Guan P, Liu P. Study of strength criterion for dynamic biaxial compressive properties of concrete under constant confining pressure. Electric Technology and Civil Engineering, International Conference on IEEE. 2011, 753-755
|
16 Shang SM, Song YP. Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete. Construction and Building Materials, 2013, 40: 322-329
|
17 Shi LL, Wang LC, Song YP, et al. Dynamic multiaxial strength and failure criterion of dam concrete. Construction and Building Materials,2014, 66: 181-191
|
18 Malvar LJ, Crawford JE, Wesevich JW, et al. A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering,1997, 19: 847-873
|
19 Hao YF, Hao H, Jiang GP, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in highspeed impact tests. Cement and Concrete Research, 2013, 52: 63-70
|
20 Xu H, Wen HM. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials. International Journal of Impact Engineering, 2013, 60: 76-81
|
21 Tedesco JW, Ross CA. Strain-rate-dependent constitutive equations for concrete. Journal of Pressure Vessel Technology, ASME, 1998,120: 398-405
|
22 Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering, 2001, 25(9): 869-886
|
23 Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003, 40: 343-360
|
24 Hao YF, Hao H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Construction and Building Materials, 2013, 48: 521-532.
|
25 CEB FIP model code 1990, Comite Euro-International Du Beton[S].
|
26 杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则. 水利学报, 2010, 41(03): 300-309 (Du Xiuli, Wang Yang, Lu Dechun. Non-linear uniaxial dynamic strength criterion for concrete. Journal of Hydraulic Engineering, 2010, 41(03): 300-309 (in Chinese))
|
27 Fujikake K, Mori K, Uebayashi K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads//Sixth International Corference on Structures under Shock and Impact.2000, 511-522
|
28 Zhao J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 1115-1121.
|
29 Kupfer HB, Gerstle KH. Behavior of concrete under biaxial stresses. Journal of Engineering Mechanics, ASCE. 1973, 99(4): 853-866
|
30 闫东明, 林皋. 双向应力状态下混凝土的动态压缩试验研究. 工程力学, 2006, 23(9): 104-108 (Yan Dongming, Lin Gao. Effect of strain rate on the biaxial compressive behavior of concrete. Engineering Mechanics, 2008, 23(4): 385-393 (in Chinese))
|
31 Willam KL, Warnke E. Constitutive model for triaxial behavior of concrete//Proceedings of the International Assoc. for Bridge and Structural Engineering. 1975, 19: 1-30
|
32 Du XL, Lu DC, Gong QM, et al. Nonlinear unified strength criterion for concrete under three dimensional stress states. Journal of Engineering Mechanics, ASCE, 2010, 136: 51-59
|
33 路德春, 杜修力, 龚秋明等. 混凝土材料的广义非线性强度理论. 水利学报, 2009, 40(5): 542-549 (Lu Dechun, Du Xiuli, Gong Qiuming, et al. Generalized nonlinear strength theory for concrete. Journal of Hydraulic Engineering, 2009, 40(5): 542-549 (in Chinese))
|
34 路德春. 基于广义非线性强度理论的土的应力路径本构模型. [博士论文]. 北京: 北京航空航天大学, 2006 (Lu Dechun A constitutive model for soils considering wmplex stress paths based on generalized nonlinear strength theory. [PhD Thesis]. Beijing: Beihang Univesity, 2006 (in Chinese))
|
35姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间. 中国科学: 技术科学. 2004, 34(11): 1283-1299 (Yao YangPing, Lu DeChun, Zhou AnNan, et al. Generalized non-linear strength theory and transformed stress space. Science in China(Ser E), 2004, 47(6): 691-709 (in English))
|
36 Lu DC, Du XL, Wang GS, et al. A three-dimensinal elatoplastic constitutive model for concrete. Computers and Structures, 2016,163: 41-55
|
37 杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则. 中国科学: 技术科学, 2014, 44(12): 1319-1332 (Du Xiuli, Wang Gaosheng, Lu Dechun. Nonlinear multiaxial dynamic strength criterion for concrete material. Scientia Sinica Technologica, 2014,44(12): 1319-1332 (in Chinese))
|
38 Coulomb CA. Essai sur une Application des Regles de Maximis et Minimis a Quelques Problèmes de Statique, Relatifs a l'Architecture. Memoires de Mathematique et de Physique, Présentés, à l'Academie Royale des Sciences, 1776, 7: 343-382
|
39 Drucker DC, Prager W, Greenberg HJ. Extended limit design theorems for continuous media. Quarterly Applied Mathematics, 1952,9(4): 381-389
|
40 Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses// Proceedings of JSCE. 1974, 232: 59-70
|
41 Lade PV, Duncan JM. Elasto-plastic stress-strain theory for cohesionless soils. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(10): 1037-1053
|
42 Lade PV. Modelling the strengths of engineering materials in three dimensions. Mechanics of Cohesive-frictional Materials, 1997;2(4): 339-356 3.0.CO;2-R">
|
43 Lade PV. Three-parameter failure criterion for concrete. Journal of the Engineering Mechanics Division, ASCE, 1982, 108 (EM5): 850-863
|
44 Hoek E, Brown ET. Empirical strength criterion for rock masses. Journal of Geotechnical Engineering Division, ASCE. 1980, 106(9):1013-1035
|
45 Hoek E, Brown ET. The Hoek-Brown failure criterion-a 1988 update. Canadian Rock Mechanics Symposium. 1988, 31-38
|
46 Hoek E, Brown ET. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 1997,34(8): 1165-1186
|
47 Podgórski J. General failure criferion for isotropic media. Journal of Engineering Mechanics ASCE, 1985, 111(2): 188-201
|
48 Ottosen NS. A failure criterion for concrete. Journal of Engineering Mechanics, ASCE, 1977, 103(4): 527-535
|
49 Hsieh SS, Ting EC, Chen WF. An elastic-fracture model for concrete// Proceeding of 3rd Engineering Mechanics Division, Special Conference ASCE, 1979, 437-440
|
50 Willam K L, Warnke E. Constitutive model for triaxial behavior of concrete//Proceedings of the International Assoc. for Bridge and Structural Engineering, 1975, 19: 1–30
|
51 Kotsovos MD. A mathematical description of the strength properties of concrete under generalized stress. Magazine of Concrete Research,1979, 31(108): 151-158
|
52 过镇海, 王传志, 张秀琴. 多轴应力下混凝土的强度和破坏准则研究. 土木工程学报, 1991, 24(3): 1-14 (Guo Zhenhai, Wang Chuanzhi, Zhang Xiuqin. Investigation of strength and failure criterion of concrete under multi-axial stresses. China Civil Engineering Journal, 1991, 24(3): 1-14 (in Chinese))
|
53 Rahman MA, Anand SC. Empirical Mohr-Coulomb failure criterion for concrete block-mortar joints. Journal of Structural Engineering,1994, 120(8): 2408-2422
|
54 Bai Y, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture, 2010,161(1): 1-20
|
55关萍. 定侧压下混凝土双轴动态抗压性能的试验研究. 土木工程学报, 2009, 42(4): 33-37 (Guan Ping Experimental study on the dynamic biaxial compressive properties of concrete under constant confining pressure. China Civil Engineering Journal, 2009, 42(4):33-37 (in Chinese))
|