EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于S准则发展的混凝土动态多轴强度准则

王国盛 路德春 杜修力 李萌

王国盛, 路德春, 杜修力, 李萌. 基于S准则发展的混凝土动态多轴强度准则[J]. 力学学报, 2016, 48(3): 636-653. doi: 10.6052/0459-1879-15-433
引用本文: 王国盛, 路德春, 杜修力, 李萌. 基于S准则发展的混凝土动态多轴强度准则[J]. 力学学报, 2016, 48(3): 636-653. doi: 10.6052/0459-1879-15-433
Wang Guosheng, Lu Dechun, Du Xiuli, Li Meng. DYNAMIC MULTIAXIAL STRENGTH CRITERION FOR CONCRETE DEVELOPED BASED ON THE S CRITEIRON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 636-653. doi: 10.6052/0459-1879-15-433
Citation: Wang Guosheng, Lu Dechun, Du Xiuli, Li Meng. DYNAMIC MULTIAXIAL STRENGTH CRITERION FOR CONCRETE DEVELOPED BASED ON THE S CRITEIRON[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 636-653. doi: 10.6052/0459-1879-15-433

基于S准则发展的混凝土动态多轴强度准则

doi: 10.6052/0459-1879-15-433
基金项目: 国家自然科学基金项目(51421005,51522802,5153800和北京市自然科学基金重点项目(816100资助.
详细信息
    通讯作者:

    杜修力,教授,主要研究方向:结构抗震.E-mail:duxiuli@bjut.edu.cn

  • 中图分类号: TU47

DYNAMIC MULTIAXIAL STRENGTH CRITERION FOR CONCRETE DEVELOPED BASED ON THE S CRITEIRON

  • 摘要: 通过对经典强度理论或准则的强度参数分析,将强度参数转化为由混凝土的单轴压缩和单轴拉伸强度表示,结合S准则给出的混凝土单轴强度的率效应规律,得出了强度参数受应变率影响的率效应函数,进而将常用的静态多轴强度准则摩尔-库伦强度理论、松岗-中井强度理论、德鲁克-普拉格强度理论、拉得-邓肯强度准则和胡克-布朗强度准则发展为动态多轴强度准则.利用混凝土动态单轴压缩和动态单轴拉伸试验结果统计分析给出的S准则率效应参数,分析了5种强度准则中强度参数随应变率的变化规律以及取值范围.基于混凝土单轴压缩和单轴拉伸强度,分别给出了5种强度准则在子午面、偏平面和平面应力条件下的强度曲线与主应力空间中的强度曲面,对比分析了5种强度准则间的异同,以及每种强度准则随应变率的变化规律.利用混凝土材料的动态双轴和动态真三轴强度试验结果,分析评价了5种动态多轴强度准则,并且阐述了各动态多轴强度准则的应变率适用范围.德鲁克-普拉格强度理论与试验结果相差甚远,不适于描述混凝土材料的强度规律.动态双轴加载时,在拉压区各强度准则差别不大,都可较好地描述试验规律;在压压区各强度准则差别较大,松岗-中井强度理论与试验结果吻合最好.在动态真三轴比例加载时,摩尔-库伦强度理论和胡克-布朗强度准则无法考虑中主应力的影响;松岗-中井强度理论和拉得-邓肯强度准则都可较好地描述试验规律.

     

  • 1 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学. 北京: 科学出版社,2014 (Li Jie, Wu Jianying, Chen Jianbing. Stochastic Damage Mechanics of Concrete Structures. Beijing: Science Press, 2014 (in Chinese))
    2 Zhang QB, Zhao J. A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mechanics and Rock Engineering, 2014, 47: 1411-1478  
    3 Jones PG, Richart FE. The effect of testing speed on strength and elastic properties of concrete//Proceedings of the American Society for Testing Materials, 1936, 36: 380-392
    4 Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete. ACI Materials Journal, 1953 49: 729-744
    5 Hughes BP, Gregory R. Concrete subjected to high rates of loading in compression. Magazine of Concrete Research, 1972, 24: 25-36  
    6 Bischoff PH, Perry SH. Compressive behaviour of concrete at high strain rates. Materials and Structures, 1991, 24: 425-450  
    7 Ross CA, Tedesco JW, Kuennen ST. Effects of strain rate on concrete strength. ACI Materials Journal, 1995, 92-M5: 37-47.
    8 Klepaczko JR, Brara A. An experimental method for dynamic tensile testing of concrete by spalling. International Journal of Impact Engineering, 2001, 25: 387-409  
    9 Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003, 40: 343-360  
    10 Lu YB, Li QM. About the dynamic uniaxial tensile strength of concrete-like materials. International Journal of Impact Engineering,2011, 38: 171-180  
    11 Al-Salloum Y, Almusallam T, Ibrahim SM, et al. Rate dependent behavior and modeling of concrete based on SHPB experiments. Cement and Concrete Composites, 2015, 55: 34-44  
    12 Liu HF, Ning JG. Mechanical behavior of reinforced concrete subjected to impact loading. Mechanics of Materials, 2009, 41: 1298-1308  
    13 Gary G, Bailly P. Behaviour of quasi-brittle material at high strain rate experiment and modelling. European Journal of Mechanics - A/Solids, 1998, 17: 403-420  
    14 Yan DM, Lin G. Dynamic behavior of concrete in biaxial compression. Magazine of Concrete Research, 2007, 59: 45-52  
    15 Guan P, Liu P. Study of strength criterion for dynamic biaxial compressive properties of concrete under constant confining pressure. Electric Technology and Civil Engineering, International Conference on IEEE. 2011, 753-755
    16 Shang SM, Song YP. Dynamic biaxial tensile-compressive strength and failure criterion of plain concrete. Construction and Building Materials, 2013, 40: 322-329  
    17 Shi LL, Wang LC, Song YP, et al. Dynamic multiaxial strength and failure criterion of dam concrete. Construction and Building Materials,2014, 66: 181-191  
    18 Malvar LJ, Crawford JE, Wesevich JW, et al. A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering,1997, 19: 847-873  
    19 Hao YF, Hao H, Jiang GP, et al. Experimental confirmation of some factors influencing dynamic concrete compressive strengths in highspeed impact tests. Cement and Concrete Research, 2013, 52: 63-70  
    20 Xu H, Wen HM. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials. International Journal of Impact Engineering, 2013, 60: 76-81  
    21 Tedesco JW, Ross CA. Strain-rate-dependent constitutive equations for concrete. Journal of Pressure Vessel Technology, ASME, 1998,120: 398-405  
    22 Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering, 2001, 25(9): 869-886  
    23 Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003, 40: 343-360  
    24 Hao YF, Hao H. Dynamic compressive behaviour of spiral steel fibre reinforced concrete in split Hopkinson pressure bar tests. Construction and Building Materials, 2013, 48: 521-532.  
    25 CEB FIP model code 1990, Comite Euro-International Du Beton[S].
    26 杜修力, 王阳, 路德春. 混凝土材料的非线性单轴动态强度准则. 水利学报, 2010, 41(03): 300-309 (Du Xiuli, Wang Yang, Lu Dechun. Non-linear uniaxial dynamic strength criterion for concrete. Journal of Hydraulic Engineering, 2010, 41(03): 300-309 (in Chinese))
    27 Fujikake K, Mori K, Uebayashi K, et al. Dynamic properties of concrete materials with high rates of tri-axial compressive loads//Sixth International Corference on Structures under Shock and Impact.2000, 511-522
    28 Zhao J. Applicability of Mohr-Coulomb and Hoek-Brown strength criteria to the dynamic strength of brittle rock. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 1115-1121.  
    29 Kupfer HB, Gerstle KH. Behavior of concrete under biaxial stresses. Journal of Engineering Mechanics, ASCE. 1973, 99(4): 853-866
    30 闫东明, 林皋. 双向应力状态下混凝土的动态压缩试验研究. 工程力学, 2006, 23(9): 104-108 (Yan Dongming, Lin Gao. Effect of strain rate on the biaxial compressive behavior of concrete. Engineering Mechanics, 2008, 23(4): 385-393 (in Chinese))
    31 Willam KL, Warnke E. Constitutive model for triaxial behavior of concrete//Proceedings of the International Assoc. for Bridge and Structural Engineering. 1975, 19: 1-30
    32 Du XL, Lu DC, Gong QM, et al. Nonlinear unified strength criterion for concrete under three dimensional stress states. Journal of Engineering Mechanics, ASCE, 2010, 136: 51-59  
    33 路德春, 杜修力, 龚秋明等. 混凝土材料的广义非线性强度理论. 水利学报, 2009, 40(5): 542-549 (Lu Dechun, Du Xiuli, Gong Qiuming, et al. Generalized nonlinear strength theory for concrete. Journal of Hydraulic Engineering, 2009, 40(5): 542-549 (in Chinese))
    34 路德春. 基于广义非线性强度理论的土的应力路径本构模型. [博士论文]. 北京: 北京航空航天大学, 2006 (Lu Dechun A constitutive model for soils considering wmplex stress paths based on generalized nonlinear strength theory. [PhD Thesis]. Beijing: Beihang Univesity, 2006 (in Chinese))
    35姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间. 中国科学: 技术科学. 2004, 34(11): 1283-1299 (Yao YangPing, Lu DeChun, Zhou AnNan, et al. Generalized non-linear strength theory and transformed stress space. Science in China(Ser E), 2004, 47(6): 691-709 (in English))
    36 Lu DC, Du XL, Wang GS, et al. A three-dimensinal elatoplastic constitutive model for concrete. Computers and Structures, 2016,163: 41-55  
    37 杜修力, 王国盛, 路德春. 混凝土材料非线性多轴动态强度准则. 中国科学: 技术科学, 2014, 44(12): 1319-1332 (Du Xiuli, Wang Gaosheng, Lu Dechun. Nonlinear multiaxial dynamic strength criterion for concrete material. Scientia Sinica Technologica, 2014,44(12): 1319-1332 (in Chinese))
    38 Coulomb CA. Essai sur une Application des Regles de Maximis et Minimis a Quelques Problèmes de Statique, Relatifs a l'Architecture. Memoires de Mathematique et de Physique, Présentés, à l'Academie Royale des Sciences, 1776, 7: 343-382  
    39 Drucker DC, Prager W, Greenberg HJ. Extended limit design theorems for continuous media. Quarterly Applied Mathematics, 1952,9(4): 381-389
    40 Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three different principal stresses// Proceedings of JSCE. 1974, 232: 59-70
    41 Lade PV, Duncan JM. Elasto-plastic stress-strain theory for cohesionless soils. Journal of the Geotechnical Engineering Division, ASCE, 1975, 101(10): 1037-1053
    42 Lade PV. Modelling the strengths of engineering materials in three dimensions. Mechanics of Cohesive-frictional Materials, 1997;2(4): 339-356  3.0.CO;2-R">
    43 Lade PV. Three-parameter failure criterion for concrete. Journal of the Engineering Mechanics Division, ASCE, 1982, 108 (EM5): 850-863
    44 Hoek E, Brown ET. Empirical strength criterion for rock masses. Journal of Geotechnical Engineering Division, ASCE. 1980, 106(9):1013-1035
    45 Hoek E, Brown ET. The Hoek-Brown failure criterion-a 1988 update. Canadian Rock Mechanics Symposium. 1988, 31-38
    46 Hoek E, Brown ET. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 1997,34(8): 1165-1186  
    47 Podgórski J. General failure criferion for isotropic media. Journal of Engineering Mechanics ASCE, 1985, 111(2): 188-201  
    48 Ottosen NS. A failure criterion for concrete. Journal of Engineering Mechanics, ASCE, 1977, 103(4): 527-535
    49 Hsieh SS, Ting EC, Chen WF. An elastic-fracture model for concrete// Proceeding of 3rd Engineering Mechanics Division, Special Conference ASCE, 1979, 437-440
    50 Willam K L, Warnke E. Constitutive model for triaxial behavior of concrete//Proceedings of the International Assoc. for Bridge and Structural Engineering, 1975, 19: 1–30
    51 Kotsovos MD. A mathematical description of the strength properties of concrete under generalized stress. Magazine of Concrete Research,1979, 31(108): 151-158  
    52 过镇海, 王传志, 张秀琴. 多轴应力下混凝土的强度和破坏准则研究. 土木工程学报, 1991, 24(3): 1-14 (Guo Zhenhai, Wang Chuanzhi, Zhang Xiuqin. Investigation of strength and failure criterion of concrete under multi-axial stresses. China Civil Engineering Journal, 1991, 24(3): 1-14 (in Chinese))
    53 Rahman MA, Anand SC. Empirical Mohr-Coulomb failure criterion for concrete block-mortar joints. Journal of Structural Engineering,1994, 120(8): 2408-2422  
    54 Bai Y, Wierzbicki T. Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture, 2010,161(1): 1-20  
    55关萍. 定侧压下混凝土双轴动态抗压性能的试验研究. 土木工程学报, 2009, 42(4): 33-37 (Guan Ping Experimental study on the dynamic biaxial compressive properties of concrete under constant confining pressure. China Civil Engineering Journal, 2009, 42(4):33-37 (in Chinese))
  • 加载中
计量
  • 文章访问数:  987
  • HTML全文浏览量:  90
  • PDF下载量:  545
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-02
  • 修回日期:  2016-03-14
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回