1 尚福林,郭显聪,北村隆行等. 纳米材料力学行为的原子尺度模拟研究. 力学进展, 2010, 40(4): 263-283 (Shang Fulin, Guo Xiancong, Kitamura T, et al. A review on atomistic simulation studies on mechanical behaviors of nano-materials. Advances in Mechanics, 2010, 40(4): 263-283 (in Chinese))
|
2 Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(22): 666-669
|
3 Sakhaee-Pour A. Elastic properties of single-layered graphene sheet. Come Mater Sci, 2009, 45(2): 266-270
|
4 Wang WD, Li S, Min JJ, et al. Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study. Nanoscale Research Letters, 2014, 9(1): 41-49
|
5 Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7(6): 1564-1583
|
6 Kim SY, Cho SY, Kang JW, et al. Molecular dynamics simulation study on mechanical responses of nanoindented monolayergraphene-nanoribbon. Physica E, 2013, 54: 118-124
|
7 Alzebdeh KI. An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet. Solid State Communications, 2014, 177: 28-25
|
8 Hemmasizadeh A, Mahzoon M, Hadi E, et al. A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films, 2008, 516: 7636-7640
|
9 Sha ZD, Wan Q, Pei QX, et al. On the failure load and mechanism of polycrystalline graphene by nanoindentation. Scientific Reports, 2014, 4: 7437-7443
|
10 Song ZG, Artyukhov VI, Wu J, et al. Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano, 2015, 9 (1): 401-408
|
11 Song ZG, Xu ZP. Geometrical effect ‘stiffens' graphene membrane at finite vacancy concentrations. Extreme Mechanics Letters, 2016, 6: 82-87
|
12 杨晓东,贺鹏飞,吴艾辉等. 石墨烯纳米压痕实验的分子动力学模拟. 中国科学,2010,40(3): 353-360 (Yang Xiaodong, He Pengfei,Wu Aihui, et al. Molecular dynamics simulation of nanoindentation for graphene. Science China, 2010, 40(3): 353-360 (in Chinese))
|
13 张森,赵宏伟,杨倚寒等. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析. 吉林大学学报, 2013, 43(6): 1558-1565. (Zhang Sen, Zhao Hongwei, Yang Yihan, et al. Molecular mechanics simulations of nanoindentation of single-layer graphene sheet. Journal of Jilin University, 2013, 43(6): 1558-1565 (in Chinese))
|
14 Lee C,Wei X, Kysar J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388
|
15 Lee CG, Wei XD, Li QY, et al. Elastic and frictional properties of graphene. Phys Status Solidi B, 2009, 246(11): 2562-2567
|
16 Frank I, Tanenbaum D, Van der Zande A, et al. Mechanical properties of suspended graphene sheets. J Vac Sci Technol B, 2007, 16(26): 2558-2561
|
17 谭新君. 石墨烯薄膜杨氏模量的分子动力学研究. [硕士论文]. 湖南:湘潭大学, 2011 (Tan Xinjun. Molecular dynamics study of the Young's modulus of graphene sheet. [Master's thesis]. Hunan: Xiangtan University, 2011 (in Chinese))
|
18 Zhang B, Yang G. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions. Physica B Condensed Matter, 2014, 451: 48-52
|
19 Xiao JR, Staniszewski J, Gillespie JW Jr. Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Composite Structures, 2009, 88(4): 602-609
|
20 Gao YW, Hao P. Mechanical properties of monolayer grapheme under tensile and compressive loading. Physica E, 2009, 41(8): 1561-1566
|
21 徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究. 力学学报, 2015, 47(5): 751-761 (Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient middle thick plate model on the vibration of graphene sheets. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761 (in Chinese))
|
22 徐巍, 王立峰, 蒋经农. 基于应变梯度有限元的单层石墨稀振动研究. 固体力学学报, 2014, 35(5): 441-450 (Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient on the vibration of solid mechanics. Chinese Journal of Solid Mechanics, 2014, 35(5): 441-450 (in Chinese))
|
23 Ouyang F, Huang B, Li Z, et al. Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects. J Phys Chem C, 2008, 112(31): 12003-12007
|
24 Hashimoto A, Suenaga K, Gloter A, et al. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870-873
|
25 Tserpes KI, Papanikos P. The effect of Stone-Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Composite Structures 2007, 79(4): 581-589
|
26 黄坤, 殷雅俊, 屈本宁等. 基于Lenosky 原子作用势单层石墨烯片的力学模型. 力学学报, 2014, 46(6): 905-910 (Huang Kun, Yin Yajun, Qu Benning, et al. A mechanics model of a monolayer graphene based on the lenosky interatomic potential energy. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 905-910 (in Chinese))
|
27 杨刚, 张斌. 类石墨烯二维原子晶体的微态理论模型. 力学学报, 2015, 47(3): 451-457. (Yang Gang, Zhang Bin. Micromorphic model of graphene-like two-dimensional atomic crystals. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 451-457 (in Chinese))
|
28 李婷. 缺陷对双层石墨烯电子结构与力学性能的影响. [硕士论文]. 湖南: 湘潭大学, 2011 (Li Ting. Effect of defects on electronic structure and mechanical properties of bilayer grapheme. [Master's thesis]. Hunan: Xiangtan University, 2011 (in Chinese))
|
29 Kwon S, Ko JH. Enhanced nanoscale friction on fluorinated graphene. American Chemical Society, 2012, 12(12): 6043-6048
|
30 Tersoffff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B, 1990, 41(5): 3248-3248
|
31 Miro P, Audiffred M, Heine T. An atlas of two-dimensional material. Chemical Society Reviews, 2014, 43: 6537-6554
|
32 Neek Amal M, Peeters FM. Nanoindentation of acircular sheet of bilayer graphene. Phys Rev B, 2011, 81(23): 235421
|
33 华军, 武霞霞, 李东波等. 基于神经网络的石墨烯弹性参量识别方法研究. 西安建筑科技大学学报, 2015, 47(5): 760-765 (Hua Jun, Wu Xiaxia, Li Dongbo, et al. Idenfication of elastic parameters method for graphene based on neural network. J Xi'an Univ of Arch & Tech, 2015, 47(5): 760-765 (in Chinese))
|
34 Tserpes KI, Papanikos P. Finite element modeling of single-walled carbon nanotubes. Composite part B: Engineering, 2005, 36(5): 468-477
|
35 Ansari R, Ajori S, Motevalli B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices and Microstructures, 2012, 51(2): 274-289
|
36 Xin H, Han Q, Yao X. Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol, 2008, 68(7): 1809-1814
|
37 唐现琼, 邓旭辉, 丁燕怀等. 纳米石墨烯片压痕实验的MD 模拟. 中国力学大会暨钱学森诞辰100 周年纪念大会, 2011, 1-5 (Tang Xianqiong, Deng Xuhui, Ding Yanhuai, et al. Molecular dynamics simulation of nanoindentation for granphene sheets. China mechanical Assembly and Qian Xuesen's 100th Anniversary Meeting, 2011, 1-5 (in Chinese))
|
38 白树林, 赵云红. 石墨烯热学性能及表征技术. 力学进展, 2014, 44 : 201406 (Bai Shulin, Zhao Yunhong. Thermal properties and characterization techniques of graphene. Advances in Mechanics, 2014, 44: 201406 (in Chinese))
|