EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含缺陷双层石墨烯的纳米压痕模拟研究

华军 武霞霞 段志荣

华军, 武霞霞, 段志荣. 含缺陷双层石墨烯的纳米压痕模拟研究[J]. 力学学报, 2016, 48(4): 917-925. doi: 10.6052/0459-1879-15-427
引用本文: 华军, 武霞霞, 段志荣. 含缺陷双层石墨烯的纳米压痕模拟研究[J]. 力学学报, 2016, 48(4): 917-925. doi: 10.6052/0459-1879-15-427
Hua Jun, Wu Xiaxia, Duan Zhirong. NUMERICAL STUDY ON NANOINDENTATION OF DEFECTIVE BILAYER GRAPHENE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 917-925. doi: 10.6052/0459-1879-15-427
Citation: Hua Jun, Wu Xiaxia, Duan Zhirong. NUMERICAL STUDY ON NANOINDENTATION OF DEFECTIVE BILAYER GRAPHENE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 917-925. doi: 10.6052/0459-1879-15-427

含缺陷双层石墨烯的纳米压痕模拟研究

doi: 10.6052/0459-1879-15-427
基金项目: 西安建筑科技大学校人才科技基金资助项目(DB12062).
详细信息
    通讯作者:

    华军,教授,主要研究方向:微纳米力学.E-mail:Huajun211@sina.com

  • 中图分类号: TB332

NUMERICAL STUDY ON NANOINDENTATION OF DEFECTIVE BILAYER GRAPHENE

  • 摘要: 石墨烯具有独特的力学、电学性能,被誉为是具有战略意义的新材料,具有广泛的应用前景. 目前生产的石墨烯含有各种缺陷,相较于完美石墨烯,其仍有较大应用价值. 因此有必要研究和掌握缺陷对石墨烯性能的影响,以便在目前的生产技术下,推动其工业化应用. 采用Tersoffff 势来模拟C—C 共价键的相互作用,Lernnard-Jones 势来模拟非成键碳原子之间相互作用力,基于分子动力学模拟了金刚石压头压入含缺陷双层石墨烯的纳米压痕过程,讨论了Lernnard-Jones 势函数的截断半径最佳值以及得到了典型的载荷-位移曲线. 重点探讨了Stone-Thrower-Wales、空位(包括单空位和双空位缺陷) 以及圆孔缺陷当位置不同和数目不同时对石墨烯力学性能的影响. 得出结论:薄膜中心存在缺陷时,破坏强度下降幅度特别明显. 空位缺陷在压头半径范围内存在时,临界载荷与缺陷与薄膜中心的距离成线性关系;缺陷数目越多,其杨氏模量、破坏强度等就越低. 圆孔缺陷数目在压头范围外达到一定浓度后会使石墨烯的力学性质显著降低. 本文结论也说明石墨烯结构稳定,对小缺陷不敏感,缺陷石墨烯仍具有较好的性能和使用价值.

     

  • 1 尚福林,郭显聪,北村隆行等. 纳米材料力学行为的原子尺度模拟研究. 力学进展, 2010, 40(4): 263-283 (Shang Fulin, Guo Xiancong, Kitamura T, et al. A review on atomistic simulation studies on mechanical behaviors of nano-materials. Advances in Mechanics, 2010, 40(4): 263-283 (in Chinese))
    2 Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(22): 666-669
    3 Sakhaee-Pour A. Elastic properties of single-layered graphene sheet. Come Mater Sci, 2009, 45(2): 266-270  
    4 Wang WD, Li S, Min JJ, et al. Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study. Nanoscale Research Letters, 2014, 9(1): 41-49  
    5 Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res, 1992, 7(6): 1564-1583  
    6 Kim SY, Cho SY, Kang JW, et al. Molecular dynamics simulation study on mechanical responses of nanoindented monolayergraphene-nanoribbon. Physica E, 2013, 54: 118-124  
    7 Alzebdeh KI. An atomistic-based continuum approach for calculation of elastic properties of single-layered graphene sheet. Solid State Communications, 2014, 177: 28-25
    8 Hemmasizadeh A, Mahzoon M, Hadi E, et al. A method for developing the equivalent continuum model of a single layer graphene sheet. Thin Solid Films, 2008, 516: 7636-7640  
    9 Sha ZD, Wan Q, Pei QX, et al. On the failure load and mechanism of polycrystalline graphene by nanoindentation. Scientific Reports, 2014, 4: 7437-7443  
    10 Song ZG, Artyukhov VI, Wu J, et al. Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano, 2015, 9 (1): 401-408  
    11 Song ZG, Xu ZP. Geometrical effect ‘stiffens' graphene membrane at finite vacancy concentrations. Extreme Mechanics Letters, 2016, 6: 82-87  
    12 杨晓东,贺鹏飞,吴艾辉等. 石墨烯纳米压痕实验的分子动力学模拟. 中国科学,2010,40(3): 353-360 (Yang Xiaodong, He Pengfei,Wu Aihui, et al. Molecular dynamics simulation of nanoindentation for graphene. Science China, 2010, 40(3): 353-360 (in Chinese))
    13 张森,赵宏伟,杨倚寒等. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析. 吉林大学学报, 2013, 43(6): 1558-1565. (Zhang Sen, Zhao Hongwei, Yang Yihan, et al. Molecular mechanics simulations of nanoindentation of single-layer graphene sheet. Journal of Jilin University, 2013, 43(6): 1558-1565 (in Chinese))
    14 Lee C,Wei X, Kysar J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388  
    15 Lee CG, Wei XD, Li QY, et al. Elastic and frictional properties of graphene. Phys Status Solidi B, 2009, 246(11): 2562-2567
    16 Frank I, Tanenbaum D, Van der Zande A, et al. Mechanical properties of suspended graphene sheets. J Vac Sci Technol B, 2007, 16(26): 2558-2561
    17 谭新君. 石墨烯薄膜杨氏模量的分子动力学研究. [硕士论文]. 湖南:湘潭大学, 2011 (Tan Xinjun. Molecular dynamics study of the Young's modulus of graphene sheet. [Master's thesis]. Hunan: Xiangtan University, 2011 (in Chinese))
    18 Zhang B, Yang G. A micromorphic model for monolayer hexagonal boron nitride with determined constitutive constants by phonon dispersions. Physica B Condensed Matter, 2014, 451: 48-52  
    19 Xiao JR, Staniszewski J, Gillespie JW Jr. Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Composite Structures, 2009, 88(4): 602-609  
    20 Gao YW, Hao P. Mechanical properties of monolayer grapheme under tensile and compressive loading. Physica E, 2009, 41(8): 1561-1566  
    21 徐巍, 王立峰, 蒋经农. 基于应变梯度中厚板单元的石墨烯振动研究. 力学学报, 2015, 47(5): 751-761 (Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient middle thick plate model on the vibration of graphene sheets. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 751-761 (in Chinese))
    22 徐巍, 王立峰, 蒋经农. 基于应变梯度有限元的单层石墨稀振动研究. 固体力学学报, 2014, 35(5): 441-450 (Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient on the vibration of solid mechanics. Chinese Journal of Solid Mechanics, 2014, 35(5): 441-450 (in Chinese))
    23 Ouyang F, Huang B, Li Z, et al. Chemical functionalization of graphene nanoribbons by carboxyl groups on Stone-Wales defects. J Phys Chem C, 2008, 112(31): 12003-12007  
    24 Hashimoto A, Suenaga K, Gloter A, et al. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430(7002): 870-873  
    25 Tserpes KI, Papanikos P. The effect of Stone-Wales defect on the tensile behavior and fracture of single-walled carbon nanotubes. Composite Structures 2007, 79(4): 581-589
    26 黄坤, 殷雅俊, 屈本宁等. 基于Lenosky 原子作用势单层石墨烯片的力学模型. 力学学报, 2014, 46(6): 905-910 (Huang Kun, Yin Yajun, Qu Benning, et al. A mechanics model of a monolayer graphene based on the lenosky interatomic potential energy. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 905-910 (in Chinese))
    27 杨刚, 张斌. 类石墨烯二维原子晶体的微态理论模型. 力学学报, 2015, 47(3): 451-457. (Yang Gang, Zhang Bin. Micromorphic model of graphene-like two-dimensional atomic crystals. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 451-457 (in Chinese))
    28 李婷. 缺陷对双层石墨烯电子结构与力学性能的影响. [硕士论文]. 湖南: 湘潭大学, 2011 (Li Ting. Effect of defects on electronic structure and mechanical properties of bilayer grapheme. [Master's thesis]. Hunan: Xiangtan University, 2011 (in Chinese))
    29 Kwon S, Ko JH. Enhanced nanoscale friction on fluorinated graphene. American Chemical Society, 2012, 12(12): 6043-6048
    30 Tersoffff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B, 1990, 41(5): 3248-3248
    31 Miro P, Audiffred M, Heine T. An atlas of two-dimensional material. Chemical Society Reviews, 2014, 43: 6537-6554  
    32 Neek Amal M, Peeters FM. Nanoindentation of acircular sheet of bilayer graphene. Phys Rev B, 2011, 81(23): 235421
    33 华军, 武霞霞, 李东波等. 基于神经网络的石墨烯弹性参量识别方法研究. 西安建筑科技大学学报, 2015, 47(5): 760-765 (Hua Jun, Wu Xiaxia, Li Dongbo, et al. Idenfication of elastic parameters method for graphene based on neural network. J Xi'an Univ of Arch & Tech, 2015, 47(5): 760-765 (in Chinese))
    34 Tserpes KI, Papanikos P. Finite element modeling of single-walled carbon nanotubes. Composite part B: Engineering, 2005, 36(5): 468-477  
    35 Ansari R, Ajori S, Motevalli B. Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattices and Microstructures, 2012, 51(2): 274-289  
    36 Xin H, Han Q, Yao X. Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamics simulation. Compos Sci Technol, 2008, 68(7): 1809-1814
    37 唐现琼, 邓旭辉, 丁燕怀等. 纳米石墨烯片压痕实验的MD 模拟. 中国力学大会暨钱学森诞辰100 周年纪念大会, 2011, 1-5 (Tang Xianqiong, Deng Xuhui, Ding Yanhuai, et al. Molecular dynamics simulation of nanoindentation for granphene sheets. China mechanical Assembly and Qian Xuesen's 100th Anniversary Meeting, 2011, 1-5 (in Chinese))
    38 白树林, 赵云红. 石墨烯热学性能及表征技术. 力学进展, 2014, 44 : 201406 (Bai Shulin, Zhao Yunhong. Thermal properties and characterization techniques of graphene. Advances in Mechanics, 2014, 44: 201406 (in Chinese))
  • 加载中
计量
  • 文章访问数:  746
  • HTML全文浏览量:  61
  • PDF下载量:  1474
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 修回日期:  2016-03-21
  • 刊出日期:  2016-07-18

目录

    /

    返回文章
    返回