EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有气体溶解和没有气体溶解的水中石墨烯间的疏水引力

骆庆群 杨洁明

骆庆群, 杨洁明. 有气体溶解和没有气体溶解的水中石墨烯间的疏水引力[J]. 力学学报, 2016, 48(3): 714-719. doi: 10.6052/0459-1879-15-426
引用本文: 骆庆群, 杨洁明. 有气体溶解和没有气体溶解的水中石墨烯间的疏水引力[J]. 力学学报, 2016, 48(3): 714-719. doi: 10.6052/0459-1879-15-426
Luo Qingqun, Yang Jieming. HYDROPHOBIC ATTRACTION OF GRAPHENE IN LIQUIDWATER WITH AND WITHOUT GAS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 714-719. doi: 10.6052/0459-1879-15-426
Citation: Luo Qingqun, Yang Jieming. HYDROPHOBIC ATTRACTION OF GRAPHENE IN LIQUIDWATER WITH AND WITHOUT GAS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 714-719. doi: 10.6052/0459-1879-15-426

有气体溶解和没有气体溶解的水中石墨烯间的疏水引力

doi: 10.6052/0459-1879-15-426
基金项目: 国家自然科学基金资助项目(2137616.
详细信息
    通讯作者:

    骆庆群,博士,主要研究方向:气体在疏水表面的吸附研究.qingqunluo@163.com

    杨洁明,博士,教授、博导,主要研究方向:对浮选过程的控制和浮选机理.E-mail:yangjieming@tyut.edu.cn

  • 中图分类号: O469;O647

HYDROPHOBIC ATTRACTION OF GRAPHENE IN LIQUIDWATER WITH AND WITHOUT GAS

  • 摘要: 凝聚物理学界发现溶解在水中的气体会在疏水表面吸附,由此认为当疏水物体间距足够小的时候,吸附在疏水表面的气体会相互联通形成纳米气泡桥,纳米气泡桥连结疏水物质形成疏水引力,但是关于纳米气泡桥的形成过程和形态,力学界还没有一个清晰的描述.采用分子动力学方法,研究了在有气体溶解的水中和没有气体溶解的水中两片石墨烯间的引力作用,分析了两种情况下各相密度分布的变化过程、结构相图的变化过程和平均力势的变化过程,详细阐明了纳米气泡桥的形成和消失过程,并定量计算了纳米气泡桥的作用效果和作用距离.模拟结果表明:两片石墨烯在有气体溶解的水中和无气体溶解的水中的疏水引力都是由纳米气泡桥引起的.当石墨烯间距小于0.5nm时,无论水中是否有气体溶解,疏水引力由真空纳米气泡桥引起;当石墨烯间距大于0.5nm时,在没有气体溶解的水中,疏水引力由水蒸气纳米气泡桥引起;而在有气体溶解的水中,疏水引力由所溶气体形成的纳米气泡桥引起.

     

  • 1 骆庆群, 杨洁明. 基于纳米气泡的煤炭浮选模型研究. 太原理工大学学报, 2014, 45(2): 201-209 (Luo Qingqun, Yang Jieming. Nanobubble-based coal flotation model. Journal of Taiyuan University of Technology, 2014, 45(2): 201-209 (in Chiniese))
    2 Luo QQ,Yang JM. Gas adsorption and accumulation on hydrophobic surfaces: Molecular dynamics simulations. Chinese Physics B,2015, 24(9): 392-398
    3 Alsawafta M, Badilescu S, Truong VV, et al. The effect of hydrogen nanobubbles on the morphology of gold-gelatin bionanocomposite films and their optical properties. Nanotechnology, 2012, 23(6):65305-65313  
    4 Bunkin NF, Yurchenko SO, Suyazov NV, et al. Structure of the nanobubble clusters of dissolved air in liquid media. Journal of Biological Physics, 2012, 38(1): 121-152  
    5 Hampton MA, Nguyen AV. Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science,2010, 154(1-2): 30-55  
    6 Rtsadl J. Nanobubbles and micropancakes: gaseous domains on immersed substrates. Journal of Physics: Condensed Matter, 2011,23(13): 1296-1323
    7 Seddon J R T, Lohse D. Nanobubbles and micropancakes: gaseous domains on immersed substrates. Journal of Physics-Condensed Matter, 2011, 23(13): 1296-1323
    8 White ER, Mecklenburg M, Singer SB, et al. Imaging nanobubbles in water with scanning transmission electron microscopy. Applied Physics Express, 2011, 4(55201): 55201-55203
    9 Attard P. Thermodynamic analysis of bridging bubbles and a quantitative comparison with the measured hydrophobic attraction. Langmuir,2000, 16(10): 4455-4466  
    10 Attard P. Nanobubbles and the hydrophobic attraction. Advances in Colloid and Interface Science, 2003, 104(104: 75-91  
    11 Hampton MA, Donose BC, Nguyen AV. Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surfaces. Journal of Colloid and Interface Science,2008, 325(1): 267-274  
    12 Ishida N, Sakamoto M, Miyahara M, et al. Attraction between hydrophobic surfaces with and without gas phase. Langmuir, 2000,16(13): 5681-5687  
    13 Yakubov GE, Butt HJ, Vinogradova OI. Interaction forces between hydrophobic surfaces. attractive jump as an indication of formation of "stable" submicrocavities. The Journal of Physical Chemistry B,2000, 104(15): 3407-3410  
    14 Mahnke J, Stearnes JA, Hayes R, et al. The influence of dissolved gas on the interactions between surfaces of different hydrophobicity in aqueous media Part I. Measurement of interaction forces. Physical Chemistry Chemical Physics, 1999, 1(11): 2793-2798  
    15 Thormann E, Simonsen A C, Hansen P L, et al. Interactions between a polystyrene particle and hydrophilic and hydrophobic surfaces in aqueous solutions. Langmuir, 2008, 24(14): 7278-7284  
    16 Koishi T, Yoo S, Yasuoka K, et al. Nanoscale hydrophobic interaction and nanobubble nucleation. Physical Review Letters, 2004,93(18): 10445-10458
    17 Duan Y, Wu C, Chowdhury S, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensedphase quantum mechanical calculations. Journal of Computational Chemistry, 2003, 24(16): 1999-2012  
    18 Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995,117(19): 5179-5197  
    19 Berendsen HJC, Postma JPM, Van Gunsteren WF, et al. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 1984, 81(8): 3684-3690  
    20 Nosé S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 1984, 81(1):511-519  
    21 Hoover W G. Canonical dynamics: equilibrium phase-space distributions. Physical Review A, 1985, 31(3): 1695-1697  
    22 Nosé S, Klein ML. Constant pressure molecular dynamics for molecular systems. Molecular Physics, 1983, 50(5): 1055-1076  
    23 Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics,1981, 52(12): 7182-7190  
    24 Patey GN, Valleau JP. The free energy of spheres with dipoles: Monte Carlo with multistage sampling. Chemical Physics Letters,1973, 21(2): 297-300  
    25 Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. Journal of Computational Physics, 1977, 23(2): 187-199  
    26 Hub JS, De Groot BL, Van Der Spoel D. A free weighted histogram analysis implementation including robust error and autocorrelation estimates. Journal of Chemical Theory and Computation, 2010,6(12): 3713-3720  
    27 Hummer G, Garde S. An information theory model of hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(17): 8951-8955  
    28 Israelachvili JN. Intermolecular and surface forces. Academic Press,1991, 42-44(3): 59-65
    29 赵亚溥. 表面与界面物理力学. 北京: 科学出版社, 2012 (Zhao Yapu. Physical Mechanics of Surfaces and Interfaces. Beijing: Science Press, 2012 (in Chinese))
    30 Yuan QZ, Zhao YP. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Physical Review Letters, 2010,104(24): 246101-246107  
    31 Giovambattista N, Rossky PJ, Debenedetti PG. Phase transitions induced by nanoconfinement in liquid water. Physical Review Letters,2009, 102(5): 050603-050609  
  • 加载中
计量
  • 文章访问数:  971
  • HTML全文浏览量:  67
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2016-01-04
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回