1 Pendleton EW, Bessette D, Field PB, et al. Active aeroelastic wing flight research program: Technical program and model analytical development. Journal of Aircraft, 2000, 37(4): 554-561
|
2 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础. 北京: 北京航空航天大 学出版社, 2004 (Chen Guibin, Zou Congqing, Yang Chao. Fundamentals of Aeroelastic Design. Beijing: Press of Beijing University of Aeronautics and Astronautics, 2004 (in Chinese))
|
3 Pendleton E, Flick P, Paul D, et al. The X-53: A summary of the active aeroelastic wing flight research program. AIAA 2007-1855,2007
|
4 Stull RB. Ahrens CD. Meteorology for Scientists and Engineers. Brooks/Cole, Pacific Grove, California, 2000
|
5 Wright JR. Cooper JE. Introduction to Aircraft Aeroelasticity and Loads. John Wiley and Sons, Ltd., West Sussex, England, 2007
|
6 Burris PM. Bender MA. Aircraft load alleviation and mode stabilization (LAMS) - B-52 system analysis, synthesis, and design. AFFDL-TR-68-161, 1969
|
7 高金源, 焦宗夏, 张平. 飞机电传操纵系统与主动控制技术, 北京: 北京航空天大学出版社, 2005 (Gao Jinyuan, Jiao Zongxia, Zhang Ping. Aircraft Electrical Control System and Active Control Technology. Beijing: Press of Beijing University of Aeronautics and Astronautics, 2005 (in Chinese))
|
8 Denegri CM. Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 2000, 37(5): 761-769
|
9 Chen YM, Liu JK, Meng G. Equivalent damping of aeroelastic system of an airfoil with cubic sti ness. Journal of Fluids and Structures,2011, 27(8): 1447-1454
|
10 Peng C, Han J. Numerical investigation of the e ects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing. Journal of Fluids and Structures, 2011, 27(4):611-622
|
11 Thomas JP, Dowell EH, Hall KC. Nonlinear inviscid aerodynamic e ects on transonic divergence, flutter, and limit-cycle oscillations. AIAA Journal, 2002, 40(4): 638-646
|
12 Stanford B, Beran P. Direct flutter and limit cycle computations of highly flexible wings for e cient analysis and optimization. Journal of Fluids and Structures, 2013, 36(1): 111-123
|
13 Munteanu SL, Rajadas J, Nam C, et al. Reduced-order-model approach for aeroelastic analysis involving aerodynamic and structural nonlinearities. AIAA Journal, 2005, 43(3): 560-571
|
14 Patil MJ, Hodges DH. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of highaspect- ratio wings. Journal of Fluids and Structures, 2004, 19(7):905-915
|
15 Tang DM, Dowell EH. E ects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. Journal of Fluids and Structures, 2004, 19(3): 291-306
|
16 Garcia JA. Numerical investigation of nonlinear aeroelastic e ects on flexible high-aspect-ratio wings. Journal of Aircraft, 2005, 42(4):1025-1036
|
17 Patil MJ, Hodges DH, Cesnik CE. Limit-cycle oscillations in highaspect- ratio wings. Journal of Fluids and Structures, 2001, 15(1):107-132
|
18 Zhao LC, Yang ZC. Chaotic motions of an airfoil with non-linear sti ness in incompressible flow. Journal of Sound and Vibration,1990, 138(2): 245-254
|
19 Yang ZC, Zhao LC. Analysis of limit cycle flutter of an airfoil in incompressible flow. Journal of Sound and Vibration, 1988, 123(1):1-13
|
20 Zhao YH, Hu HY. Aeroelastic analysis of a non-linear airfoil based on unsteady vortex lattice model. Journal of Sound and Vibration,2004, 276(3): 491-510
|
21 Dowell EH, Tang DM. Nonlinear aeroelasticity and unsteady aerodynamics. AIAA Journal, 2002, 40(9): 1697-1707
|
22 Gold P, Karpel M. Reduced-size aeroservoelastic modeling and limit-cycle-oscillation simulations with structurally nonlinear actuators. Journal of Aircraft, 2008, 45(2): 471-477
|
23 Conner MD, Tang DM, Dowell EH, et al. Nonlinear behavior of a typical airfoil section with control surface free-play: A numerical and experimental study. Journal of Fluids and Structures, 1997,11(1): 89-109
|
24 Tang DM, Dowell EH, Virgin LN. Limit cycle behavior of an airfoil with a control surface. Journal of Fluids and Structures, 1998,12(7): 839-858
|
25 Gordon JT, Meyer EE, Minogue RL. Nonlinear stability analysis of control surface flutter with freeplay e ects. Journal of Aircraft,2008, 45(6): 1904-1916
|
26 Dowell EH, Thomas JP, Hall KC. Transonic limit cycle oscillation analysis using reduced order aerodynamic models. Journal of Fluids and Structures, 2004, 19(1): 17-27
|
27 Jones DP, Roberts I, Gaitonde AL. Identification of limit cycles for piecewise nonlinear aeroelastic systems. Journal of Fluids and Structures, 2007, 23(7): 1012-1028
|
28 李道春, 向锦武. 间隙非线性气动弹性颤振控制. 北京航空航天 大学学报, 2007, 33(6): 640-643 (Li Daochun, Xiang Jinwu. Flutter control of aeroelasticity with freeplay nonlinearity. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 640-643 (in Chinese))
|
29 ShinW, Lee S, Lee I, et al. E ects of actuator nonlinearity on aeroelastic characteristics of a control fin. Journal of Fluids and Structures,2007, 23(7): 1093-1105
|
30 管德, 宗捷. 结构非线性对颤振特性的影响. 北京航空航天大学学 报, 1994, 20(4): 357-361 (Guan De, Zong Jie. Impact of structural nonlinearities on flutter. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(4): 357-361 (in Chinese))
|
31 Karpel M, Raveh D. Fictitious mass element in structural dynamics. AIAA Journal, 1996, 34(3): 607-613
|
32 Bae J, Inman DJ, Lee I. E ects of structural nonlinearity on subsonic aeroelastic characteristics of an aircraft wing with control surface. Journal of Fluids and Structures, 2004, 19(6): 747-763
|
33 Kim JY, Kim KS, Lee I, et al. Transonic aeroelastic analysis of allmovable wing with free play and viscous e ects. Journal of Aircraft,2008, 45(5): 1820-1824
|
34 Lee DH, Chen PC. Nonlinear aeroelastic studies on a folding wing configuration with free-play hinge nonlinearity. AIAA 2006-1734,2006
|
35 Lee I, Kim S. Aeroelastic analysis of a flexible control surface with structural nonlinearity. Journal of Aircraft, 1995, 32(4): 868-874
|
36 Bae J, Yang S, Lee I. Linear and nonlinear aeroelastic analysis of fighter-type wing with control surface. Journal of Aircraft, 2002,39(4): 697-708
|
37 Frampton KD, Clark RL. Experiments on control of limit-cycle oscillations in a typical section. Journal of Guidance,Control,and Dynamics, 2000, 23(5): 956-960
|
38 Huang R, Hu HY, Zhao YH. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play. Journal of Fluids and Structures, 2013, 42(1): 245-269
|
39 王在华, 胡海岩. 时滞动力系统的稳定性与分岔: 从理论走向应 用. 力学进展, 2013, 43(1): 3-20 (Wang Zaihua, Hu Haiyan. Stability and bifurcation of delayed dynamic systems: from theory to application. Advances in Mechanics, 2013, 43(1): 3-20 (in Chinese))
|
40 Huang XY. Active control of aerofoil flutter. AIAA Journal, 1987,25(8): 1126-1132
|
41 Luton JA, Mook DT. Numerical simulations of flutter and its suppression by active control. AIAA Journal, 1993, 31(12): 2312-2319
|
42 Waszak MR, Srinathkumar S. Flutter suppression for the active flexible wing: A classical design. Journal of Aircraft, 1995, 32(1): 61-67
|
43 Gaspari AD, Ricci S, Riccobene L, et al. Active aeroelastic control over a multi-surface wing: Modeling and wind-tunnel testing. AIAA Journal, 2009, 47(9): 1995-2010
|
44 Librescu L, Marzocca P, SilvaWA. Aeroelasticity of 2-D lifting surfaces with time-delayed feedback control. Journal of Fluids and Structures, 2005, 20(2): 197-215
|
45 Marzocca P, Librescu L, Silva WA. Time-delay e ects on linear/ nonlinear feedback control of simple aeroelastic systems. Journal of Guidance,Control,and Dynamics, 2005, 28(1): 53-62
|
46 Zhao YH. Stability of a two-dimensional airfoil with time-delayed feedback control. Journal of Fluids and Structures, 2009, 25(1):1-25
|
47 Zhao YH. Stability of a time-delayed aeroelastic system with a control surface. Aerospace Science and Technology, 2011, 15(1): 72-77
|
48 Ramesh M, Narayanan S. Controlling chaotic motions in a twodimensional airfoil using time-delayed feedback. Journal of Sound and Vibration, 2001, 239(5): 1037-1049
|
49 Yuan Y, Yu P, Librescu L, et al. Aeroelasticity of time-delayed feedback control of two-dimensional supersonic lifting surfaces. Journal of Guidance,Control,and Dynamics, 2004, 27(5): 795-803
|
50 Haraguchi M, Hu HY. Using a new discretization approach to design a delayed LQG controller. Journal of Sound and Vibration, 2008,314(3): 558-570
|
51 Huang R, Hu HY, Zhao YH. Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay. Journal of Fluids and Structures, 2012, 34(1): 33-50
|
52 Mukhopadhyay V. Flutter suppression control law design and testing for the active flexible wing. Journal of Aircraft, 1995, 32(1): 45-51
|
53 Mukhopadhyay V. Digital robust control law synthesis using constrained optimization. Journal of Guidance,Control,and Dynamics,1989, 12(2): 175-181
|
54 Mukhopadhyay V, Newsom JR, Abel I. Reduced-order optimal feedback control law synthesis for flutter suppression. Journal of Guidance, Control,and Dynamics, 1982, 5(4): 389-395
|
55 杨超, 宋晨, 吴志刚等. 多控制面飞机的全机颤振主动抑制设计. 航空学报, 2010, 31(8): 1501-1508 (Yang Chao, Song Chen, Wu Zhigang, et al. Active flutter suppression of airplane configuration with multiple control surfaces. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1501-1508 (in Chinese))
|
56 于明礼, 文浩, 胡海岩. 二维翼段颤振的H1 控制. 振动工程学 报, 2006, 19(3): 326-330 (Yu Mingli, Wen Hao, Hu Haiyan. Active flutter suppression of a two-dimensional airfoil using H1 synthesis. Journal of Vibration Engineering, 2006, 19(3): 326-330 (in Chinese))
|
57 于明礼, 文浩, 胡海岩等. 二维翼段颤振的 控制. 航空学报,2007, 28(2): 340-343 (Yu Mingli, Wen Hao, Hu Haiyan, et al. Active flutter suppression of a two dimensional airfoil section using synthesis. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):340-343 (in Chinese))
|
58 Livne E. Future of airplane aeroelasticity. Journal of Aircraft, 2003,40(6): 1066-1092
|
59 Ko J, Kurdila AJ, Strganac TW. Nonlinear control of a prototypical wing section with torsional nonlinearity. Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1181-1189
|
60 Singh SN,Wang L. Output feedback form and adaptive stabilization of a nonlinear aeroelastic system. Journal of Guidance,Control, and Dynamics, 2002, 25(4): 725-732
|
61 Behal A, Rao VM, Marzocca P, et al. Adaptive control for a nonlinear wing section with multiple flaps. Journal of Guidance, Control,and Dynamics, 2006, 29(3): 744-749
|
62 Wang Z, Behal A, Marzocca P. Model-free control design for multiinput multi-output aeroelastic system subject to external disturbance. Journal of Guidance,Control,and Dynamics, 2011, 34(2):446-458
|
63 Zhang R, Singh SN. Adaptive output feedback control of an aeroelastic system with unstructured uncertainties. Journal of Guidance, Control,and Dynamics, 2001, 24(3): 502-509
|
64 Peloubet Jr RP, Haller RL, Bolding RM. F-16 flutter suppression system investigation feasibility study and wind tunnel tests. Journal of Aircraft, 1982, 19(2): 169-175
|
65 Peloubet RP, Haller RL, Bolding RM. Online adaptive control of unstable aircraft wing flutter. //Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawaii, USA, 1990
|
66 Johnson T, Harvey C, Stein GÌN. Self-tuning regulator design for adaptive control of aircraft wing/store flutter. Automatic Control, IEEE Transactions On, 1982, 27(5): 1014-1023
|
67 Andrighettoni M, Mantegazza P. Multi-input/multi-output adaptive active flutter suppression for a wing model. Journal of Aircraft,1998, 35(3): 462-469
|
68 Bernelli-Zazzera F, Mantegazza P, Mazzoni G, et al. Active flutter suppression using recurrent neural networks. Journal of Guidance, Control, and Dynamics, 2000, 23(6): 1030-1036
|
69 Mattaboni M, Quaranta G, Mantegazza P. Active flutter suppression for a three-surface transport aircraft by recurrent neural networks. Journal of Guidance,Control,and Dynamics, 2009, 32(4): 1295-1307
|
70 Ioannou PA, Sun J. Robust Adaptive Control. Courier Dover Publications,2012
|
71 Slotine JE, Li W. Applied Nonlinear Control. Prentice-Hall Englewood Cli s, NJ: Prentice-Hall, 1991
|
72 Huang R, Hu HY, Zhao YH. Single-input/single-output adaptive flutter suppression of a three-dimensional aeroelastic system. Journal of Guidance,Control,and Dynamics, 2012, 35(2): 659-665
|
73 Bendiksen OO. Role of shock dynamics in transonic flutter. AIAA 1992-2121, 1992
|
74 Liu F, Cai J, Zhu Y, et al. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft, 2001, 38(2): 334-342
|
75 Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal,2000, 38(10): 1853-1862
|
76 Cowan TJ, Arena AS, Gupta KK. Accelerating computational fluid dynamics based aeroelastic predictions using system identification. Journal of Aircraft, 2001, 38(1): 81-87
|
77 Gupta KK, Bach C. Systems identification approach for a computational-fluid-dynamics- based aeroelastic analysis. AIAA Journal, 2007, 45(12): 2820-2827
|
78 Silva WA, Bartels RE. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. Journal of Fluids and Structures, 2004, 19(6): 729-745
|
79 Kim T. E cient reduced-order system identification for linear systems with multiple inputs. AIAA Journal, 2005, 43(7): 1455-1464
|
80 Kim T, Hong M, Bhatia KG, et al. Aeroelastic model reduction for a ordable computational fluid dynamics-based flutter analysis. AIAA Journal, 2005, 43(12): 2487-2495
|
81 Silva WA. Simultaneous excitation of multiple-input/multipleoutput CFD-based unsteady aerodynamic systems. Journal of Aircraft,2008, 45(4): 1267-1274
|
82 Kim T. System identification for coupled fluid-structure: aerodynamics is aeroelasticity minus structure. AIAA Journal, 2011, 49(3):503-512
|
83 Raveh DE. Identification of computational-fluid-dynamics based unsteady aerodynamic models for aeroelastic analysis. Journal of Aircraft,2004, 41(3): 620-632
|
84 Thomas JP, Dowell EH, Hall KC. A harmonic balance approach for modeling three-dimensional nonlinear unsteady aerodynamics and aeroelasticity.//IMECE-2002-32532, Proceedings of ASME International Mechanical Engineering Conference and Exposition, New Orleans, Louisiana, USA, 2002
|
85 Hall KC, Thomas JP, Clark WS. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal,2002, 40(5): 879-886
|
86 Thomas JP, Dowell EH, Hall KC. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach. Journal of Aircraft, 2004, 41(6): 1266-1274
|
87 Thomas JP, Dowell EH, Hall KC, et al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach.AIAA 2005-1917, 2005
|
88 Liu L, Thomas JP, Dowell EH, et al. A comparison of classical and high dimensional harmonic balance approaches for a Du ng oscillator. Journal of Computational Physics, 2006, 215(1): 298-320
|
89 Thomas JP, Custer CH, Dowell EH, et al. Unsteady flow computation using a harmonic balance approach implemented about the OVERFLOW 2 flow solver. AIAA 2009-4270, 2009
|
90 Marques FD, Anderson J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functionals. Journal of Fluids and Structures, 2001, 15(1): 83-106
|
91 Zhang WW, Wang B, Ye ZY, et al. E cient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA Journal, 2012, 50(5): 1019-1028
|
92 Glaz B, Friedmann PP, Liu L, et al. Reduced-order dynamic stall modeling with swept flow e ects using a surrogate-based recurrence framework. AIAA Journal, 2013, 51(4): 910-921
|
93 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望. 力学进展, 2011, 41(6): 686-701 (Chen Gang, Li Yueming. Advances and prospects of the reduced order model for unsteady flow and its application. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese))
|
94 Silva WA. Application of nonlinear systems theory to transonic unsteady aerodynamic responses. Journal of Aircraft, 1993, 30(5):660-668
|
95 SilvaW. Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear Dynamics,2005, 39(1): 25-62
|
96 Raveh DE. Reduced-order models for nonlinear unsteady aerodynamics. AIAA Journal, 2001, 39(8): 1417-1429
|
97 Marzocca P, Librescu L, Silva WA. Aeroelastic response of nonlinear wing sections using a functional series technique. AIAA Journal,2002, 40(5): 813-824
|
98 Marzocca P, Silva WA, Librescu L. Nonlinear open-/closed-loop aeroelastic analysis of airfoils via Volterra series. AIAA Journal,2004, 42(4): 673-686
|
99 Munteanu S, Rajadas J, Nam C, et al. An e cient approach for solving nonlinear aeroelastic phenomenon using reduced-order modeling. AIAA 2004-2037, 2004
|
100 Balajewicz M, Nitzsche F, Feszty D. Application of multi-input Volterra theory to nonlinear multi-degree-of-freedom aerodynamic systems. AIAA Journal, 2010, 48(1): 56-62
|
101 Balajewicz M, Dowell EH. Reduced-order modeling of flutter and limit-cycle oscillations using the sparse Volterra series. Journal of Aircraft, 2012, 49(6): 1803-1812
|
102 Hunter IW, Korenberg MJ. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern,1986, 55(2-3): 135-144
|
103 Westwick DT. Methods for the identification of multiple-input nonlinear systems. [PhD Thesis]. McGill University, 1995
|
104 Huang R, Hu HY, Zhao YH. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems. AIAA Journal,2014, 52(6): 1219-1231
|
105 More JJ. The Levenberg-Marquardt Algorithm: Implementation and Theory. Springer, 1978: 105-116
|
106 Isogai K. On the transonic-dip mechanism of flutter of a sweptback wing. AIAA Journal, 1979, 17(7): 793-795
|
107 Waszak MR. Modeling the benchmark active control technology wind-tunnel model for application to flutter suppression. AIAA 1996-3437, 1996
|
108 Mukhopadhyay V. Benchmark active control technology: part I. Journal of Guidance, Control, and Dynamics, 2000, 23(5): 913
|
109 Mukhopadhyay V. Benchmark active control technology special section: part II. Journal of Guidance,Control,and Dynamics, 2000,23(6): 1093
|
110 Mukhopadhyay V. Benchmark active control technology special section: part III. Journal of Guidance,Control,and Dynamics, 2001,24(1): 146
|
111 Huang R, Li HK, Hu HY, et al. Open-/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models. AIAA Journal, 2015, 53(7): 1812-1824
|
112 Van Gestel T, Suykens JA, Van Dooren P, et al. Identification of stable models in subspace identification by using regularization. IEEE Transactions on Automatic Control, 2001, 46(9): 1416-1420
|
113 Zhang WW, Ye ZY. Control law design for transonic aeroservoelasticity. Aerospace Science and Technology, 2007, 11(2): 136-145
|
114 Stephens CH, Arena AS, Gupta KK. CFD-based aeroservoelastic predictions with comparisons to benchmark experimental data. AIAA 1999-16615, 1999
|
115 Friedmann PP, Guillot D, Presente E. Adaptive control of aeroelastic instabilities in transonic flow and its scaling. Journal of Guidance, Control,and Dynamics, 1997, 20(6): 1190-1199
|
116 Mukhopadhyay V. Transonic flutter suppression control law design and wind-tunnel test results. Journal of Guidance, Control, and Dynamics,2000, 23(5): 930-937
|
117 Waszak MR. Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model. Journal of Guidance, Control,and Dynamics, 2001, 24(1): 147-153
|
118 Scott RC, Pado LE. Active control of wind-tunnel model aeroelastic response using neural networks. Journal of Guidance Control and Dynamics, 2000, 23(6): 1100-1108
|
119 赵永辉. 气动弹性力学与控制. 北京: 科学出版社, 2007 (Zhao Yonghui. Aeroelasticity and Control. Beijing: Science Press, 2007 (in Chinese))
|
120 Etkin B. Theory of the flight of airplanes in isotropic turbulencereview and extension. AGARD Rep, 1961, 372
|
121 Karpel M, Moulin B. Aeroservoelastic gust response analysis for the design of transport aircrafts. AIAA 2004-1592, 2004
|
122 Crimaldi JP, Britt RT, Rodden WP. Response of B-2 aircraft to nonuniform spanwise turbulence. Journal of Aircraft, 1993, 30(5):652-659
|
123 陈磊, 吴志刚, 杨超. 多控制面机翼阵风减缓主动控制与风洞试验 验证. 航空学报, 2009, 30(12): 2250-2256 (Chen Lei, Wu Zhigang, Yang Chao, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese))
|
124 Karpel M, Moulin B, Chen PC. Dynamic response of aeroservoelastic systems to gust excitation. Journal of Aircraft, 2005, 42(5):1264-1272
|
125 费玉华. 阵风减缓直接升力控制方案的仿真研究. 飞行力学,2000, 18(1): 69-72 (Fei Yuhua. Direct lift force control plan about gust load alleviation modeling and simulation. Flight Dynamics,2000, 18(1): 69-72 (in Chinese))
|
126 Moulin B, Karpel M. Gust loads alleviation using special control Surfaces. Journal of Aircraft, 2007, 44(1): 17-24
|
127 Gangsaas D, Ly U, Norman DC. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. AIAA 1981-0021, 1981
|
128 Dillsaver MJ, Cesnik CES, Kolmanovsky IV. Gust load alleviation control for very flexible aircraft. AIAA 2011-6368, 2011
|
129 Matsuzaki Y, Ueda T, Miyazawa Y. Gust load alleviation of a transport-type wing: test and analysis. Journal of Aircraft, 1989,26(4): 322-327
|
130 Cook RG, Palacios R. Robust gust alleviation and stabilization of very flexible aircraft. AIAA Journal, 2013, 51(2): 330-340
|
131 Wildschek A, Stroscher F. Gust load alleviation on a large blended wing body airliner. Proc. of 27th International Congress of the Aeronautic Sciences, 2010. 1-10
|
132 Balas GJ, Moreno C, Seiler PJ. Robust aeroservoelastic control utilizing physics-based aerodynamic sensing. AIAA 2012-4897, 2012
|
133 Gili PA, Ruotolo R. A neural gust alleviation for a non-linear combat aircraft model. AIAA 1997-3761, 1997
|
134 Shao K, Wu ZG, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments. Journal of Aircraft, 2010, 47(3): 1022-102
|
135 Regan CD, Jutte CV. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft. NASA- TM 2012-216008
|
136 Disney TE. The C-5A active load alleviation system. AIAA 1975-991, 1975
|
137 Wykes JH, Mori AS, Borland CJ. B-1 structural mode control system. AIAA 1972-772, 1972
|
138 Honlinger H, Zimmermann H, Sensburg O. Structural aspects of active control technology. Proc. of AGARD Flight Mechanics Panel Symposium, Turin, Italy, 1995
|
139 Britt RT, Volk JA, Dreim DR, et al. Aeroservoelastic characteristics of the B-2 bomber and implications for future large aircraft. Proc. of Structural Aspects of Flexible Aircraft Control Specialists Meeting,2000
|
140 Norris G,Wagner M. Airbus A380: Superjumbo of the 21st Century. Zenith Press, St. Paul, Minnesota, 2005
|
141 Norris G, Wagner M. Boeing 787 Dream Liner. Zenith Press, Minneapolis, Minnesota, 2009
|
142 Baldelli DH, Chen PC. Unified aeroelastic and flight dynamic formulation via rational function approximations. Journal of Aircraft,2006, 43(3): 763-772
|
143 Chen PC, Baldelli DH, Zeng J. Dynamic flight simulation (DFS) tool for nonlinear flight dynamic simulation including aeroelastic e ects. AIAA 2008-6376, 2008
|
144 Meirovitch L, Tuzcu I. Unified theory for the dynamics and control of maneuvering flexible aircraft. AIAA Journal, 2004, 42(4): 714-727
|
145 Raveh DE. Gust response analysis of free elastic aircraft in the transonic flight regime. Journal of Aircraft, 2011, 48(4): 1204-1211
|
146 Bogue RK, Jentink HW. Optical air flow measurements in flight. NASA-TP2004-210735, 2004
|
147 Rabadan GJ, Schmitt NP. Airborne lidar for automatic feedforward control of turbulent in-flight phenomena. Journal of Aircraft, 2010,47(2): 392-403
|
148 Wildschek A, Maier R, Ho mann F. Active wing load alleviation with an adaptive feed-forward control algorithm.//Proc. of AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, August, 2006
|
149 Wildschek A, Maier R, Jategaonkar R. Augmentation of active wing bending control with a supplementary adaptive feed-forward control algorithm.//Proc. of 2nd European Conference for Aerospace Sciences, Brussels, Belgium, EUCASS, 2007
|
150 Zeng J, Moulin B, Callafon R. Adaptive feedforward control for gust load alleviation. Journal of Guidance,Control,and Dynamics,2010, 33(3): 862-872
|
151 Wildschek A, Hanis T, Stroscher F. L-infinity optimal feedforward gust load alleviation design for a large blended wing body airliner. Progress in Flight Dynamics,GNC,and Avionics, 2013, 6: 707-728
|
152 Schmitt N, Rehm W, Ziller T. The AWIATOR airborne LIDAR turbulence sensor. Aerospace Science and Technology, 2007, 11(1):546-552
|
153 Schmitt N, RehmW, Pistner T. Flight test of the AWIATOR airborne LIDAR turbulence sensor.//Proc. of 14th Coherent Laser Radar Conference, Hunstville, AL, June, 2007
|
154 Hahn KU, Schwarz C. Alleviation of atmospheric flow disturbance e ects on aircraft response, The 26th International Congress of the Aeronautical Sciences, Anchorage, Alaska, USA, 2008
|
155 Hecker S, Hahn KU. Advanced gust load alleviation system for large flexible aircraft.//Proc. of First CEAS European Air and Space Conference,2007, CEAS-2007-110, Berlin, Germany
|
156 胡志明, 赵永辉. 基于前视突风探测信息的飞机载荷减缓控制. 航空计算技术, 2015, 45(4): 33-37 (Hu Zhiming, Zhao Yonghui. Load alleviation for an aircraft based on forward looking gust information. Aeronautical Computing Technique, 2015, 45(4): 33-37 (in Chinese))
|
157 Wildschek A, Bartosiewicz A, Mozyrska D. A multi-input multioutput adaptive feed-forward controller for vibration alleviation on a large blended wing body airliner. Journal of Sound and Vibration,2014, 333(17): 3859-3880
|
158 Perry B, Cole SR, Miller GD. Summary of an active flexible wing program. Journal of Aircraft, 1995, 32(1): 10-15
|
159 Hoadley ST, Mcgraw SM. Multiple-function digital controller system for active flexible wing wind-tunnel model. Journal of Aircraft,1995, 32(1): 32-38
|
160 Wieseman CD, Hoadley ST, Mcgraw SM. On-line analysis capabilities developed to support the active flexible wing wind-tunnel tests. Journal of Aircraft, 1995, 32(1): 39-44
|
161 Ghiringhelli GL, Lanz M, Mantegazza P. Active flutter suppression for a wing model. Journal of Aircraft, 1990, 27(4): 334-341
|
162 唐长红, 邹丛青. 利用双目标优化寻求颤振抑制控制律. 北京航空 航天大学学报, 1990, (2): 56-64 (Tang Changhong, Zou Congqing. Design of active flutter suppression control law using a dual optimization method. Journal of Beijing University of Aeronautics and Astronautics, 1990, (2): 56-64 (in Chinese))
|
163 曹奇凯, 陈桂彬. 机翼/外挂系统的颤振主动抑制研究. 航空学报,1991, 12(10): 453-458 (Cao Qikai, Chen Guibin. A study of active flutter suppression for a wing/store system. Acta Aeronautica et Astronautica Sinica, 1991, 12(10): 453-458 (in Chinese))
|
164 于明礼. 基于超声电机作动器的二维翼段颤振主动抑制. [博士 论文]. 南京: 南京航空航天大学,2006 (Yu Mingli. Active flutter suppression of a two-dimensional airfoil using ultrasonic motor. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics,2006 (in Chinese))
|
165 Huang R, Qian WM, Hu HY, et al. Design of active flutter suppression and wind-tunnel tests of a wing model involving a control delay. Journal of Fluids and Structures, 2015, 55(1): 409-427
|
166 Haley P, Soloway D. Generalized predictive control for active flutter suppression. Journal of Guidance,Control,and Dynamics, 2001,24(1): 154-159
|
167 Scott RC, Hoadley ST, Wieseman CD, et al. Benchmark active controls technology model aerodynamic data. Journal of Guidance, Control,and Dynamics, 2000, 23(5): 914-921
|
168 SilvaWA, Perry B, Florance JR, et al. An overview of the semi-span super-sonic transport (S4T) wind-tunnel model program. AIAA 2012-1552, 2012
|
169 Zeng J, Kukreja SL. Flutter prediction for flight/wind-tunnel flutter test under atmospheric turbulence excitation. Journal of Aircraft,2013, 50(6): 1696-1709
|