EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞机结构气动弹性分析与控制研究

胡海岩 赵永辉 黄锐

胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1-27. doi: 10.6052/0459-1879-15-423
引用本文: 胡海岩, 赵永辉, 黄锐. 飞机结构气动弹性分析与控制研究[J]. 力学学报, 2016, 48(1): 1-27. doi: 10.6052/0459-1879-15-423
Hu Haiyan, Zhao Yonghui, Huang Rui. STUDIES ON AEROELASTIC ANALYSIS AND CONTROL OF AIRCRAFT STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27. doi: 10.6052/0459-1879-15-423
Citation: Hu Haiyan, Zhao Yonghui, Huang Rui. STUDIES ON AEROELASTIC ANALYSIS AND CONTROL OF AIRCRAFT STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 1-27. doi: 10.6052/0459-1879-15-423

飞机结构气动弹性分析与控制研究

doi: 10.6052/0459-1879-15-423
基金项目: 国家自然科学基金(11472128,11502106)和江苏省自然科学基金(BK20150736)资助项目.
详细信息
    通讯作者:

    胡海岩,教授,中国科学院院士,主要研究方向:飞行器结构动力学与控制.E-mail:hhyae@nuaa.edu.cn

  • 中图分类号: V215.3

STUDIES ON AEROELASTIC ANALYSIS AND CONTROL OF AIRCRAFT STRUCTURES

  • 摘要: 随着主动控制技术的发展,飞机结构设计理念已由提高结构刚度的被动设计转变为随控布局的主动设计.主动设计理念不再刻意回避气动弹性问题,而是采用主动控制技术实时调节结构气动弹性,进而减轻结构重量、优化飞机性能. 在飞机随控布局主动设计中,必须深入分析结构与气流之间的耦合,才能更好发挥气动弹性主动控制技术的作用. 从20 世纪80 年代起,航空科技界对该问题进行了长期研究,对飞机结构-空气动力-主动控制相互耦合后的关键力学问题有了深入理解. 然而,已有研究多基于简化模型,导致研究结果难以直接应用于工程. 本文将针对气动弹性动态问题,综述空气动力非线性、控制面间隙非线性、时滞诱发失稳、颤振主动抑制、突风载荷减缓、风洞实验验证等方面的国内外研究进展,重点介绍近年来作者团队所提出的若干方法及相关算例和风洞实验. 最后,指出今后一个时期值得研究的若干气动弹性分析与控制问题.

     

  • 1 Pendleton EW, Bessette D, Field PB, et al. Active aeroelastic wing flight research program: Technical program and model analytical development. Journal of Aircraft, 2000, 37(4): 554-561  
    2 陈桂彬, 邹丛青, 杨超. 气动弹性设计基础. 北京: 北京航空航天大 学出版社, 2004 (Chen Guibin, Zou Congqing, Yang Chao. Fundamentals of Aeroelastic Design. Beijing: Press of Beijing University of Aeronautics and Astronautics, 2004 (in Chinese))
    3 Pendleton E, Flick P, Paul D, et al. The X-53: A summary of the active aeroelastic wing flight research program. AIAA 2007-1855,2007
    4 Stull RB. Ahrens CD. Meteorology for Scientists and Engineers. Brooks/Cole, Pacific Grove, California, 2000
    5 Wright JR. Cooper JE. Introduction to Aircraft Aeroelasticity and Loads. John Wiley and Sons, Ltd., West Sussex, England, 2007
    6 Burris PM. Bender MA. Aircraft load alleviation and mode stabilization (LAMS) - B-52 system analysis, synthesis, and design. AFFDL-TR-68-161, 1969
    7 高金源, 焦宗夏, 张平. 飞机电传操纵系统与主动控制技术, 北京: 北京航空天大学出版社, 2005 (Gao Jinyuan, Jiao Zongxia, Zhang Ping. Aircraft Electrical Control System and Active Control Technology. Beijing: Press of Beijing University of Aeronautics and Astronautics, 2005 (in Chinese))
    8 Denegri CM. Limit cycle oscillation flight test results of a fighter with external stores. Journal of Aircraft, 2000, 37(5): 761-769  
    9 Chen YM, Liu JK, Meng G. Equivalent damping of aeroelastic system of an airfoil with cubic sti ness. Journal of Fluids and Structures,2011, 27(8): 1447-1454  
    10 Peng C, Han J. Numerical investigation of the e ects of structural geometric and material nonlinearities on limit-cycle oscillation of a cropped delta wing. Journal of Fluids and Structures, 2011, 27(4):611-622  
    11 Thomas JP, Dowell EH, Hall KC. Nonlinear inviscid aerodynamic e ects on transonic divergence, flutter, and limit-cycle oscillations. AIAA Journal, 2002, 40(4): 638-646  
    12 Stanford B, Beran P. Direct flutter and limit cycle computations of highly flexible wings for e cient analysis and optimization. Journal of Fluids and Structures, 2013, 36(1): 111-123
    13 Munteanu SL, Rajadas J, Nam C, et al. Reduced-order-model approach for aeroelastic analysis involving aerodynamic and structural nonlinearities. AIAA Journal, 2005, 43(3): 560-571  
    14 Patil MJ, Hodges DH. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of highaspect- ratio wings. Journal of Fluids and Structures, 2004, 19(7):905-915  
    15 Tang DM, Dowell EH. E ects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings. Journal of Fluids and Structures, 2004, 19(3): 291-306  
    16 Garcia JA. Numerical investigation of nonlinear aeroelastic e ects on flexible high-aspect-ratio wings. Journal of Aircraft, 2005, 42(4):1025-1036  
    17 Patil MJ, Hodges DH, Cesnik CE. Limit-cycle oscillations in highaspect- ratio wings. Journal of Fluids and Structures, 2001, 15(1):107-132  
    18 Zhao LC, Yang ZC. Chaotic motions of an airfoil with non-linear sti ness in incompressible flow. Journal of Sound and Vibration,1990, 138(2): 245-254  
    19 Yang ZC, Zhao LC. Analysis of limit cycle flutter of an airfoil in incompressible flow. Journal of Sound and Vibration, 1988, 123(1):1-13  
    20 Zhao YH, Hu HY. Aeroelastic analysis of a non-linear airfoil based on unsteady vortex lattice model. Journal of Sound and Vibration,2004, 276(3): 491-510
    21 Dowell EH, Tang DM. Nonlinear aeroelasticity and unsteady aerodynamics. AIAA Journal, 2002, 40(9): 1697-1707  
    22 Gold P, Karpel M. Reduced-size aeroservoelastic modeling and limit-cycle-oscillation simulations with structurally nonlinear actuators. Journal of Aircraft, 2008, 45(2): 471-477  
    23 Conner MD, Tang DM, Dowell EH, et al. Nonlinear behavior of a typical airfoil section with control surface free-play: A numerical and experimental study. Journal of Fluids and Structures, 1997,11(1): 89-109  
    24 Tang DM, Dowell EH, Virgin LN. Limit cycle behavior of an airfoil with a control surface. Journal of Fluids and Structures, 1998,12(7): 839-858  
    25 Gordon JT, Meyer EE, Minogue RL. Nonlinear stability analysis of control surface flutter with freeplay e ects. Journal of Aircraft,2008, 45(6): 1904-1916  
    26 Dowell EH, Thomas JP, Hall KC. Transonic limit cycle oscillation analysis using reduced order aerodynamic models. Journal of Fluids and Structures, 2004, 19(1): 17-27  
    27 Jones DP, Roberts I, Gaitonde AL. Identification of limit cycles for piecewise nonlinear aeroelastic systems. Journal of Fluids and Structures, 2007, 23(7): 1012-1028  
    28 李道春, 向锦武. 间隙非线性气动弹性颤振控制. 北京航空航天 大学学报, 2007, 33(6): 640-643 (Li Daochun, Xiang Jinwu. Flutter control of aeroelasticity with freeplay nonlinearity. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(6): 640-643 (in Chinese))
    29 ShinW, Lee S, Lee I, et al. E ects of actuator nonlinearity on aeroelastic characteristics of a control fin. Journal of Fluids and Structures,2007, 23(7): 1093-1105  
    30 管德, 宗捷. 结构非线性对颤振特性的影响. 北京航空航天大学学 报, 1994, 20(4): 357-361 (Guan De, Zong Jie. Impact of structural nonlinearities on flutter. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(4): 357-361 (in Chinese))
    31 Karpel M, Raveh D. Fictitious mass element in structural dynamics. AIAA Journal, 1996, 34(3): 607-613  
    32 Bae J, Inman DJ, Lee I. E ects of structural nonlinearity on subsonic aeroelastic characteristics of an aircraft wing with control surface. Journal of Fluids and Structures, 2004, 19(6): 747-763  
    33 Kim JY, Kim KS, Lee I, et al. Transonic aeroelastic analysis of allmovable wing with free play and viscous e ects. Journal of Aircraft,2008, 45(5): 1820-1824  
    34 Lee DH, Chen PC. Nonlinear aeroelastic studies on a folding wing configuration with free-play hinge nonlinearity. AIAA 2006-1734,2006
    35 Lee I, Kim S. Aeroelastic analysis of a flexible control surface with structural nonlinearity. Journal of Aircraft, 1995, 32(4): 868-874  
    36 Bae J, Yang S, Lee I. Linear and nonlinear aeroelastic analysis of fighter-type wing with control surface. Journal of Aircraft, 2002,39(4): 697-708  
    37 Frampton KD, Clark RL. Experiments on control of limit-cycle oscillations in a typical section. Journal of Guidance,Control,and Dynamics, 2000, 23(5): 956-960  
    38 Huang R, Hu HY, Zhao YH. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play. Journal of Fluids and Structures, 2013, 42(1): 245-269
    39 王在华, 胡海岩. 时滞动力系统的稳定性与分岔: 从理论走向应 用. 力学进展, 2013, 43(1): 3-20 (Wang Zaihua, Hu Haiyan. Stability and bifurcation of delayed dynamic systems: from theory to application. Advances in Mechanics, 2013, 43(1): 3-20 (in Chinese))
    40 Huang XY. Active control of aerofoil flutter. AIAA Journal, 1987,25(8): 1126-1132  
    41 Luton JA, Mook DT. Numerical simulations of flutter and its suppression by active control. AIAA Journal, 1993, 31(12): 2312-2319  
    42 Waszak MR, Srinathkumar S. Flutter suppression for the active flexible wing: A classical design. Journal of Aircraft, 1995, 32(1): 61-67  
    43 Gaspari AD, Ricci S, Riccobene L, et al. Active aeroelastic control over a multi-surface wing: Modeling and wind-tunnel testing. AIAA Journal, 2009, 47(9): 1995-2010  
    44 Librescu L, Marzocca P, SilvaWA. Aeroelasticity of 2-D lifting surfaces with time-delayed feedback control. Journal of Fluids and Structures, 2005, 20(2): 197-215  
    45 Marzocca P, Librescu L, Silva WA. Time-delay e ects on linear/ nonlinear feedback control of simple aeroelastic systems. Journal of Guidance,Control,and Dynamics, 2005, 28(1): 53-62  
    46 Zhao YH. Stability of a two-dimensional airfoil with time-delayed feedback control. Journal of Fluids and Structures, 2009, 25(1):1-25  
    47 Zhao YH. Stability of a time-delayed aeroelastic system with a control surface. Aerospace Science and Technology, 2011, 15(1): 72-77  
    48 Ramesh M, Narayanan S. Controlling chaotic motions in a twodimensional airfoil using time-delayed feedback. Journal of Sound and Vibration, 2001, 239(5): 1037-1049  
    49 Yuan Y, Yu P, Librescu L, et al. Aeroelasticity of time-delayed feedback control of two-dimensional supersonic lifting surfaces. Journal of Guidance,Control,and Dynamics, 2004, 27(5): 795-803  
    50 Haraguchi M, Hu HY. Using a new discretization approach to design a delayed LQG controller. Journal of Sound and Vibration, 2008,314(3): 558-570
    51 Huang R, Hu HY, Zhao YH. Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay. Journal of Fluids and Structures, 2012, 34(1): 33-50
    52 Mukhopadhyay V. Flutter suppression control law design and testing for the active flexible wing. Journal of Aircraft, 1995, 32(1): 45-51  
    53 Mukhopadhyay V. Digital robust control law synthesis using constrained optimization. Journal of Guidance,Control,and Dynamics,1989, 12(2): 175-181  
    54 Mukhopadhyay V, Newsom JR, Abel I. Reduced-order optimal feedback control law synthesis for flutter suppression. Journal of Guidance, Control,and Dynamics, 1982, 5(4): 389-395  
    55 杨超, 宋晨, 吴志刚等. 多控制面飞机的全机颤振主动抑制设计. 航空学报, 2010, 31(8): 1501-1508 (Yang Chao, Song Chen, Wu Zhigang, et al. Active flutter suppression of airplane configuration with multiple control surfaces. Acta Aeronautica et Astronautica Sinica, 2010, 31(8): 1501-1508 (in Chinese))
    56 于明礼, 文浩, 胡海岩. 二维翼段颤振的H1 控制. 振动工程学 报, 2006, 19(3): 326-330 (Yu Mingli, Wen Hao, Hu Haiyan. Active flutter suppression of a two-dimensional airfoil using H1 synthesis. Journal of Vibration Engineering, 2006, 19(3): 326-330 (in Chinese))
    57 于明礼, 文浩, 胡海岩等. 二维翼段颤振的 控制. 航空学报,2007, 28(2): 340-343 (Yu Mingli, Wen Hao, Hu Haiyan, et al. Active flutter suppression of a two dimensional airfoil section using synthesis. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):340-343 (in Chinese))
    58 Livne E. Future of airplane aeroelasticity. Journal of Aircraft, 2003,40(6): 1066-1092  
    59 Ko J, Kurdila AJ, Strganac TW. Nonlinear control of a prototypical wing section with torsional nonlinearity. Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1181-1189  
    60 Singh SN,Wang L. Output feedback form and adaptive stabilization of a nonlinear aeroelastic system. Journal of Guidance,Control, and Dynamics, 2002, 25(4): 725-732  
    61 Behal A, Rao VM, Marzocca P, et al. Adaptive control for a nonlinear wing section with multiple flaps. Journal of Guidance, Control,and Dynamics, 2006, 29(3): 744-749  
    62 Wang Z, Behal A, Marzocca P. Model-free control design for multiinput multi-output aeroelastic system subject to external disturbance. Journal of Guidance,Control,and Dynamics, 2011, 34(2):446-458  
    63 Zhang R, Singh SN. Adaptive output feedback control of an aeroelastic system with unstructured uncertainties. Journal of Guidance, Control,and Dynamics, 2001, 24(3): 502-509  
    64 Peloubet Jr RP, Haller RL, Bolding RM. F-16 flutter suppression system investigation feasibility study and wind tunnel tests. Journal of Aircraft, 1982, 19(2): 169-175  
    65 Peloubet RP, Haller RL, Bolding RM. Online adaptive control of unstable aircraft wing flutter. //Proceedings of the 29th Conference on Decision and Control, Honolulu, Hawaii, USA, 1990
    66 Johnson T, Harvey C, Stein GÌN. Self-tuning regulator design for adaptive control of aircraft wing/store flutter. Automatic Control, IEEE Transactions On, 1982, 27(5): 1014-1023  
    67 Andrighettoni M, Mantegazza P. Multi-input/multi-output adaptive active flutter suppression for a wing model. Journal of Aircraft,1998, 35(3): 462-469  
    68 Bernelli-Zazzera F, Mantegazza P, Mazzoni G, et al. Active flutter suppression using recurrent neural networks. Journal of Guidance, Control, and Dynamics, 2000, 23(6): 1030-1036  
    69 Mattaboni M, Quaranta G, Mantegazza P. Active flutter suppression for a three-surface transport aircraft by recurrent neural networks. Journal of Guidance,Control,and Dynamics, 2009, 32(4): 1295-1307  
    70 Ioannou PA, Sun J. Robust Adaptive Control. Courier Dover Publications,2012
    71 Slotine JE, Li W. Applied Nonlinear Control. Prentice-Hall Englewood Cli s, NJ: Prentice-Hall, 1991
    72 Huang R, Hu HY, Zhao YH. Single-input/single-output adaptive flutter suppression of a three-dimensional aeroelastic system. Journal of Guidance,Control,and Dynamics, 2012, 35(2): 659-665  
    73 Bendiksen OO. Role of shock dynamics in transonic flutter. AIAA 1992-2121, 1992
    74 Liu F, Cai J, Zhu Y, et al. Calculation of wing flutter by a coupled fluid-structure method. Journal of Aircraft, 2001, 38(2): 334-342  
    75 Hall KC, Thomas JP, Dowell EH. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA Journal,2000, 38(10): 1853-1862  
    76 Cowan TJ, Arena AS, Gupta KK. Accelerating computational fluid dynamics based aeroelastic predictions using system identification. Journal of Aircraft, 2001, 38(1): 81-87  
    77 Gupta KK, Bach C. Systems identification approach for a computational-fluid-dynamics- based aeroelastic analysis. AIAA Journal, 2007, 45(12): 2820-2827  
    78 Silva WA, Bartels RE. Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. Journal of Fluids and Structures, 2004, 19(6): 729-745
    79 Kim T. E cient reduced-order system identification for linear systems with multiple inputs. AIAA Journal, 2005, 43(7): 1455-1464  
    80 Kim T, Hong M, Bhatia KG, et al. Aeroelastic model reduction for a ordable computational fluid dynamics-based flutter analysis. AIAA Journal, 2005, 43(12): 2487-2495  
    81 Silva WA. Simultaneous excitation of multiple-input/multipleoutput CFD-based unsteady aerodynamic systems. Journal of Aircraft,2008, 45(4): 1267-1274  
    82 Kim T. System identification for coupled fluid-structure: aerodynamics is aeroelasticity minus structure. AIAA Journal, 2011, 49(3):503-512  
    83 Raveh DE. Identification of computational-fluid-dynamics based unsteady aerodynamic models for aeroelastic analysis. Journal of Aircraft,2004, 41(3): 620-632  
    84 Thomas JP, Dowell EH, Hall KC. A harmonic balance approach for modeling three-dimensional nonlinear unsteady aerodynamics and aeroelasticity.//IMECE-2002-32532, Proceedings of ASME International Mechanical Engineering Conference and Exposition, New Orleans, Louisiana, USA, 2002
    85 Hall KC, Thomas JP, Clark WS. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal,2002, 40(5): 879-886  
    86 Thomas JP, Dowell EH, Hall KC. Modeling viscous transonic limit cycle oscillation behavior using a harmonic balance approach. Journal of Aircraft, 2004, 41(6): 1266-1274  
    87 Thomas JP, Dowell EH, Hall KC, et al. Further investigation of modeling limit cycle oscillation behavior of the F-16 fighter using a harmonic balance approach.AIAA 2005-1917, 2005
    88 Liu L, Thomas JP, Dowell EH, et al. A comparison of classical and high dimensional harmonic balance approaches for a Du ng oscillator. Journal of Computational Physics, 2006, 215(1): 298-320  
    89 Thomas JP, Custer CH, Dowell EH, et al. Unsteady flow computation using a harmonic balance approach implemented about the OVERFLOW 2 flow solver. AIAA 2009-4270, 2009
    90 Marques FD, Anderson J. Identification and prediction of unsteady transonic aerodynamic loads by multi-layer functionals. Journal of Fluids and Structures, 2001, 15(1): 83-106  
    91 Zhang WW, Wang B, Ye ZY, et al. E cient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA Journal, 2012, 50(5): 1019-1028  
    92 Glaz B, Friedmann PP, Liu L, et al. Reduced-order dynamic stall modeling with swept flow e ects using a surrogate-based recurrence framework. AIAA Journal, 2013, 51(4): 910-921  
    93 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望. 力学进展, 2011, 41(6): 686-701 (Chen Gang, Li Yueming. Advances and prospects of the reduced order model for unsteady flow and its application. Advances in Mechanics, 2011, 41(6): 686-701 (in Chinese))
    94 Silva WA. Application of nonlinear systems theory to transonic unsteady aerodynamic responses. Journal of Aircraft, 1993, 30(5):660-668  
    95 SilvaW. Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear Dynamics,2005, 39(1): 25-62
    96 Raveh DE. Reduced-order models for nonlinear unsteady aerodynamics. AIAA Journal, 2001, 39(8): 1417-1429  
    97 Marzocca P, Librescu L, Silva WA. Aeroelastic response of nonlinear wing sections using a functional series technique. AIAA Journal,2002, 40(5): 813-824  
    98 Marzocca P, Silva WA, Librescu L. Nonlinear open-/closed-loop aeroelastic analysis of airfoils via Volterra series. AIAA Journal,2004, 42(4): 673-686  
    99 Munteanu S, Rajadas J, Nam C, et al. An e cient approach for solving nonlinear aeroelastic phenomenon using reduced-order modeling. AIAA 2004-2037, 2004
    100 Balajewicz M, Nitzsche F, Feszty D. Application of multi-input Volterra theory to nonlinear multi-degree-of-freedom aerodynamic systems. AIAA Journal, 2010, 48(1): 56-62  
    101 Balajewicz M, Dowell EH. Reduced-order modeling of flutter and limit-cycle oscillations using the sparse Volterra series. Journal of Aircraft, 2012, 49(6): 1803-1812  
    102 Hunter IW, Korenberg MJ. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol Cybern,1986, 55(2-3): 135-144
    103 Westwick DT. Methods for the identification of multiple-input nonlinear systems. [PhD Thesis]. McGill University, 1995
    104 Huang R, Hu HY, Zhao YH. Nonlinear reduced-order modeling for multiple-input/multiple-output aerodynamic systems. AIAA Journal,2014, 52(6): 1219-1231  
    105 More JJ. The Levenberg-Marquardt Algorithm: Implementation and Theory. Springer, 1978: 105-116
    106 Isogai K. On the transonic-dip mechanism of flutter of a sweptback wing. AIAA Journal, 1979, 17(7): 793-795  
    107 Waszak MR. Modeling the benchmark active control technology wind-tunnel model for application to flutter suppression. AIAA 1996-3437, 1996
    108 Mukhopadhyay V. Benchmark active control technology: part I. Journal of Guidance, Control, and Dynamics, 2000, 23(5): 913  
    109 Mukhopadhyay V. Benchmark active control technology special section: part II. Journal of Guidance,Control,and Dynamics, 2000,23(6): 1093  
    110 Mukhopadhyay V. Benchmark active control technology special section: part III. Journal of Guidance,Control,and Dynamics, 2001,24(1): 146  
    111 Huang R, Li HK, Hu HY, et al. Open-/closed-loop aeroservoelastic predictions via nonlinear, reduced-order aerodynamic models. AIAA Journal, 2015, 53(7): 1812-1824  
    112 Van Gestel T, Suykens JA, Van Dooren P, et al. Identification of stable models in subspace identification by using regularization. IEEE Transactions on Automatic Control, 2001, 46(9): 1416-1420  
    113 Zhang WW, Ye ZY. Control law design for transonic aeroservoelasticity. Aerospace Science and Technology, 2007, 11(2): 136-145
    114 Stephens CH, Arena AS, Gupta KK. CFD-based aeroservoelastic predictions with comparisons to benchmark experimental data. AIAA 1999-16615, 1999
    115 Friedmann PP, Guillot D, Presente E. Adaptive control of aeroelastic instabilities in transonic flow and its scaling. Journal of Guidance, Control,and Dynamics, 1997, 20(6): 1190-1199  
    116 Mukhopadhyay V. Transonic flutter suppression control law design and wind-tunnel test results. Journal of Guidance, Control, and Dynamics,2000, 23(5): 930-937  
    117 Waszak MR. Robust multivariable flutter suppression for benchmark active control technology wind-tunnel model. Journal of Guidance, Control,and Dynamics, 2001, 24(1): 147-153  
    118 Scott RC, Pado LE. Active control of wind-tunnel model aeroelastic response using neural networks. Journal of Guidance Control and Dynamics, 2000, 23(6): 1100-1108  
    119 赵永辉. 气动弹性力学与控制. 北京: 科学出版社, 2007 (Zhao Yonghui. Aeroelasticity and Control. Beijing: Science Press, 2007 (in Chinese))
    120 Etkin B. Theory of the flight of airplanes in isotropic turbulencereview and extension. AGARD Rep, 1961, 372
    121 Karpel M, Moulin B. Aeroservoelastic gust response analysis for the design of transport aircrafts. AIAA 2004-1592, 2004
    122 Crimaldi JP, Britt RT, Rodden WP. Response of B-2 aircraft to nonuniform spanwise turbulence. Journal of Aircraft, 1993, 30(5):652-659  
    123 陈磊, 吴志刚, 杨超. 多控制面机翼阵风减缓主动控制与风洞试验 验证. 航空学报, 2009, 30(12): 2250-2256 (Chen Lei, Wu Zhigang, Yang Chao, et al. Active control and wind tunnel test verification of multi-control surfaces wing for gust alleviation. Acta Aeronautica et Astronautica Sinica, 2009, 30(12): 2250-2256 (in Chinese))
    124 Karpel M, Moulin B, Chen PC. Dynamic response of aeroservoelastic systems to gust excitation. Journal of Aircraft, 2005, 42(5):1264-1272  
    125 费玉华. 阵风减缓直接升力控制方案的仿真研究. 飞行力学,2000, 18(1): 69-72 (Fei Yuhua. Direct lift force control plan about gust load alleviation modeling and simulation. Flight Dynamics,2000, 18(1): 69-72 (in Chinese))
    126 Moulin B, Karpel M. Gust loads alleviation using special control Surfaces. Journal of Aircraft, 2007, 44(1): 17-24  
    127 Gangsaas D, Ly U, Norman DC. Practical gust load alleviation and flutter suppression control laws based on a LQG methodology. AIAA 1981-0021, 1981
    128 Dillsaver MJ, Cesnik CES, Kolmanovsky IV. Gust load alleviation control for very flexible aircraft. AIAA 2011-6368, 2011
    129 Matsuzaki Y, Ueda T, Miyazawa Y. Gust load alleviation of a transport-type wing: test and analysis. Journal of Aircraft, 1989,26(4): 322-327  
    130 Cook RG, Palacios R. Robust gust alleviation and stabilization of very flexible aircraft. AIAA Journal, 2013, 51(2): 330-340  
    131 Wildschek A, Stroscher F. Gust load alleviation on a large blended wing body airliner. Proc. of 27th International Congress of the Aeronautic Sciences, 2010. 1-10
    132 Balas GJ, Moreno C, Seiler PJ. Robust aeroservoelastic control utilizing physics-based aerodynamic sensing. AIAA 2012-4897, 2012
    133 Gili PA, Ruotolo R. A neural gust alleviation for a non-linear combat aircraft model. AIAA 1997-3761, 1997
    134 Shao K, Wu ZG, Yang C, et al. Design of an adaptive gust response alleviation control system: simulations and experiments. Journal of Aircraft, 2010, 47(3): 1022-102  
    135 Regan CD, Jutte CV. Survey of applications of active control technology for gust alleviation and new challenges for lighter-weight aircraft. NASA- TM 2012-216008
    136 Disney TE. The C-5A active load alleviation system. AIAA 1975-991, 1975
    137 Wykes JH, Mori AS, Borland CJ. B-1 structural mode control system. AIAA 1972-772, 1972
    138 Honlinger H, Zimmermann H, Sensburg O. Structural aspects of active control technology. Proc. of AGARD Flight Mechanics Panel Symposium, Turin, Italy, 1995
    139 Britt RT, Volk JA, Dreim DR, et al. Aeroservoelastic characteristics of the B-2 bomber and implications for future large aircraft. Proc. of Structural Aspects of Flexible Aircraft Control Specialists Meeting,2000
    140 Norris G,Wagner M. Airbus A380: Superjumbo of the 21st Century. Zenith Press, St. Paul, Minnesota, 2005
    141 Norris G, Wagner M. Boeing 787 Dream Liner. Zenith Press, Minneapolis, Minnesota, 2009
    142 Baldelli DH, Chen PC. Unified aeroelastic and flight dynamic formulation via rational function approximations. Journal of Aircraft,2006, 43(3): 763-772  
    143 Chen PC, Baldelli DH, Zeng J. Dynamic flight simulation (DFS) tool for nonlinear flight dynamic simulation including aeroelastic e ects. AIAA 2008-6376, 2008
    144 Meirovitch L, Tuzcu I. Unified theory for the dynamics and control of maneuvering flexible aircraft. AIAA Journal, 2004, 42(4): 714-727  
    145 Raveh DE. Gust response analysis of free elastic aircraft in the transonic flight regime. Journal of Aircraft, 2011, 48(4): 1204-1211  
    146 Bogue RK, Jentink HW. Optical air flow measurements in flight. NASA-TP2004-210735, 2004
    147 Rabadan GJ, Schmitt NP. Airborne lidar for automatic feedforward control of turbulent in-flight phenomena. Journal of Aircraft, 2010,47(2): 392-403  
    148 Wildschek A, Maier R, Ho mann F. Active wing load alleviation with an adaptive feed-forward control algorithm.//Proc. of AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, August, 2006
    149 Wildschek A, Maier R, Jategaonkar R. Augmentation of active wing bending control with a supplementary adaptive feed-forward control algorithm.//Proc. of 2nd European Conference for Aerospace Sciences, Brussels, Belgium, EUCASS, 2007
    150 Zeng J, Moulin B, Callafon R. Adaptive feedforward control for gust load alleviation. Journal of Guidance,Control,and Dynamics,2010, 33(3): 862-872  
    151 Wildschek A, Hanis T, Stroscher F. L-infinity optimal feedforward gust load alleviation design for a large blended wing body airliner. Progress in Flight Dynamics,GNC,and Avionics, 2013, 6: 707-728
    152 Schmitt N, Rehm W, Ziller T. The AWIATOR airborne LIDAR turbulence sensor. Aerospace Science and Technology, 2007, 11(1):546-552
    153 Schmitt N, RehmW, Pistner T. Flight test of the AWIATOR airborne LIDAR turbulence sensor.//Proc. of 14th Coherent Laser Radar Conference, Hunstville, AL, June, 2007
    154 Hahn KU, Schwarz C. Alleviation of atmospheric flow disturbance e ects on aircraft response, The 26th International Congress of the Aeronautical Sciences, Anchorage, Alaska, USA, 2008
    155 Hecker S, Hahn KU. Advanced gust load alleviation system for large flexible aircraft.//Proc. of First CEAS European Air and Space Conference,2007, CEAS-2007-110, Berlin, Germany
    156 胡志明, 赵永辉. 基于前视突风探测信息的飞机载荷减缓控制. 航空计算技术, 2015, 45(4): 33-37 (Hu Zhiming, Zhao Yonghui. Load alleviation for an aircraft based on forward looking gust information. Aeronautical Computing Technique, 2015, 45(4): 33-37 (in Chinese))
    157 Wildschek A, Bartosiewicz A, Mozyrska D. A multi-input multioutput adaptive feed-forward controller for vibration alleviation on a large blended wing body airliner. Journal of Sound and Vibration,2014, 333(17): 3859-3880  
    158 Perry B, Cole SR, Miller GD. Summary of an active flexible wing program. Journal of Aircraft, 1995, 32(1): 10-15  
    159 Hoadley ST, Mcgraw SM. Multiple-function digital controller system for active flexible wing wind-tunnel model. Journal of Aircraft,1995, 32(1): 32-38  
    160 Wieseman CD, Hoadley ST, Mcgraw SM. On-line analysis capabilities developed to support the active flexible wing wind-tunnel tests. Journal of Aircraft, 1995, 32(1): 39-44  
    161 Ghiringhelli GL, Lanz M, Mantegazza P. Active flutter suppression for a wing model. Journal of Aircraft, 1990, 27(4): 334-341  
    162 唐长红, 邹丛青. 利用双目标优化寻求颤振抑制控制律. 北京航空 航天大学学报, 1990, (2): 56-64 (Tang Changhong, Zou Congqing. Design of active flutter suppression control law using a dual optimization method. Journal of Beijing University of Aeronautics and Astronautics, 1990, (2): 56-64 (in Chinese))
    163 曹奇凯, 陈桂彬. 机翼/外挂系统的颤振主动抑制研究. 航空学报,1991, 12(10): 453-458 (Cao Qikai, Chen Guibin. A study of active flutter suppression for a wing/store system. Acta Aeronautica et Astronautica Sinica, 1991, 12(10): 453-458 (in Chinese))
    164 于明礼. 基于超声电机作动器的二维翼段颤振主动抑制. [博士 论文]. 南京: 南京航空航天大学,2006 (Yu Mingli. Active flutter suppression of a two-dimensional airfoil using ultrasonic motor. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics,2006 (in Chinese))
    165 Huang R, Qian WM, Hu HY, et al. Design of active flutter suppression and wind-tunnel tests of a wing model involving a control delay. Journal of Fluids and Structures, 2015, 55(1): 409-427
    166 Haley P, Soloway D. Generalized predictive control for active flutter suppression. Journal of Guidance,Control,and Dynamics, 2001,24(1): 154-159  
    167 Scott RC, Hoadley ST, Wieseman CD, et al. Benchmark active controls technology model aerodynamic data. Journal of Guidance, Control,and Dynamics, 2000, 23(5): 914-921  
    168 SilvaWA, Perry B, Florance JR, et al. An overview of the semi-span super-sonic transport (S4T) wind-tunnel model program. AIAA 2012-1552, 2012
    169 Zeng J, Kukreja SL. Flutter prediction for flight/wind-tunnel flutter test under atmospheric turbulence excitation. Journal of Aircraft,2013, 50(6): 1696-1709  
  • 加载中
计量
  • 文章访问数:  2071
  • HTML全文浏览量:  180
  • PDF下载量:  2242
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-23
  • 修回日期:  2015-11-27
  • 刊出日期:  2016-01-18

目录

    /

    返回文章
    返回