EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的多轴非比例低周疲劳寿命预测临界面模型

赵而年 瞿伟廉

赵而年, 瞿伟廉. 一种新的多轴非比例低周疲劳寿命预测临界面模型[J]. 力学学报, 2016, 48(4): 944-952. doi: 10.6052/0459-1879-15-377
引用本文: 赵而年, 瞿伟廉. 一种新的多轴非比例低周疲劳寿命预测临界面模型[J]. 力学学报, 2016, 48(4): 944-952. doi: 10.6052/0459-1879-15-377
Zhao Ernian, Qu Weilian. A NEW PROPOSAL FOR MULTIAXIAL LOW-CYCLE FATIGUE LIFE PREDICTION UNDER NON-PROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 944-952. doi: 10.6052/0459-1879-15-377
Citation: Zhao Ernian, Qu Weilian. A NEW PROPOSAL FOR MULTIAXIAL LOW-CYCLE FATIGUE LIFE PREDICTION UNDER NON-PROPORTIONAL LOADING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 944-952. doi: 10.6052/0459-1879-15-377

一种新的多轴非比例低周疲劳寿命预测临界面模型

doi: 10.6052/0459-1879-15-377
基金项目: 国家自然科学基金资助项目(51438002, 51378409).
详细信息
    通讯作者:

    赵而年,博士研究生,主要研究方向:钢结构的疲劳.E-mail:zhaoern@126.com

  • 中图分类号: TG111.8;O346.2

A NEW PROPOSAL FOR MULTIAXIAL LOW-CYCLE FATIGUE LIFE PREDICTION UNDER NON-PROPORTIONAL LOADING

  • 摘要: 工程结构在服役过程中往往承受着复杂的多轴非比例循环荷载,在长期动力载荷作用下结构构件的失效主要为多轴非比例疲劳破坏. 文中基于圆管薄壁试件在拉-扭复合加载情况下的多轴疲劳试验结果,对比了广泛讨论的Kandil-Brown-Miller (KBM) 模型和Fatemi-Socie (FS) 模型对多轴非比例疲劳寿命的预测能力,分析了非比例加载条件引起多轴疲劳附加损伤的原因;针对FS 模型对不存在非比例附加强化的材料多轴疲劳寿命预测的不足,提出了一个能考虑非比例加载路径变化和材料附加强化效应双重作用的非比例影响因子,参照FS 准则提出了一种新的多轴非比例低周疲劳寿命预测临界面模型. 利用5 种材料的多轴非比例疲劳试验数据对该模型进行了试验验证,结果表明:采用文中提出的临界面模型预测的多轴非比例疲劳寿命与试验结果符合较好,预测精度优于FS 模型;同时,该模型对不存在非比例附加强化的材料的多轴疲劳寿命预测表现出更好的适用性,且能有效的提高不同类型材料的多轴非比例疲劳寿命预测精度.

     

  • 1 Socie DF, Marquis GB. Multiaxial fatigue. Warrendale, PA: SAE, 2000
    2 Gladskyi M, Shukaev S. A new model for low cycle fatigue of metal alloys under non-proportional loading. International Journal of Fatigue, 2010, 32(10):1568-1572  
    3 Brown MW, Miller KJ. A theory for fatigue failure under multiaxial stress-strain conditions. Proceedings of the Institution of Mechanical Engineers, 1973, 187(1): 745-755
    4 Socie DF, Shield TW. Mean stress effects in biaxial fatigue of inconel 718. Journal of Engineering Materials & Technology, 1984, 106(3): 227-232  
    5 Lohr RD, Ellison EG. A simple theory for low cycle multiaxial fatigue. Fatigue & Fracture of Engineering Materials & Structures, 1980, 3(1): 1-17  
    6 Fatemi A, Socie DF. A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue & Fracture of Engineering Materials & Structures, 1988, 11(3): 149-165  
    7 Wang YY, Yao WX. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading. International Journal of Fatigue, 2006, 28(4): 401-408  
    8 Shang DG, Sun GQ, Deng J, et al. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue, 2007, 29(12):2200-2207  
    9 Li J, Zhang Z, Sun Q, et al. Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach. International Journal of Fatigue, 2011, 33(2): 90-101  
    10 Karolczuk A, Macha E. A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials. International Journal of Fracture, 2005, 134(3-4): 267-304  
    11 You BR, Lee SB. A critical review on multiaxial fatigue assessments of metals. International Journal of Fatigue, 1996, 18(4): 235-244  
    12 尚德广, 王德俊. 多轴疲劳强度. 北京: 科学出版社, 2007 (Shang Deguang, Wang Dejun. Multiaxial Fatigue Strength. Beijing: Science Press, 2007 (in Chinese))
    13 Shang DG, Sun GQ, Deng J, et al. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue, 2007, 29(12): 2200-2207  
    14 Jiang Y, Hertel O, Vormwald M. An experimental evaluation of three critical plane multiaxial fatigue criteria. International Journal of Fatigue, 2007, 29(8): 1490-1502  
    15 Shamsaei N, Fatemi A. Effect of hardness on multiaxial fatigue behaviour and some simple approximations for steels. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(8): 631-646  
    16 张小元. Q235 钢多轴低周疲劳寿命及评估方法研究. [硕士论文]. 南宁:广西大学, 2013 (Zhang Xiaoyuan. Research on multiaxial low-cycle fatigue and life evaluation for Q235 steel. [Master Thesis]. Nanning: Guangxi University, 2013 (in Chinese))
    17 Nitta A, Ogata T, Kuwabara K. Fracture mechanisms and life assessment under high-strain biaxial cyclic loading of type 304 stainless steel. Fatigue & Fracture of Engineering Materials & Structures, 1989, 12(2): 77-92  
    18 Gao Z, Zhao T,Wang X. Multiaxial fatigue of 16MnR steel. Journal of Pressure Vessel Technology, 2009, 131(2): 73-80
    19 Li J, Zhang Z, Sun Q, et al. Low-cycle fatigue life prediction of various metallic materials under multiaxial loading. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(4): 280-290  
    20 Lee KS, Song JH. Estimation methods for strain-life fatigue properties from hardness. International Journal of Fatigue, 2006, 28(4): 386-400  
    21 Wang CH, Brown MW. A path-independent parameter for fatigue under proportional and non ‐ proportional loading. Fatigue & Fracture of Engineering Materials & Structures, 1993, 16(12): 1285-1297  
    22 赵社戌, 匡震邦. 考虑路径相关性的非比例循环塑性本构模型. 力学学报, 1999, 4 (4): 484-492 (Zhao Shexu, Kuang Zhenbang. A constitutive model for non-proportional cyclic plasticity with loading path dependence.Acta Mechanica Sinica, 1999, 4 (4): 484-492 (in Chinese))
    23 Reis L, Li B, Freitas MD. Crack initiation and growth path under multiaxial fatigue loading in structural steels. International Journal of Fatigue, 2009, 31(s11-12): 1660-1668
    24 Itoh T, Sakane M, Ohsuga K. Multiaxial low cycle fatigue life under non-proportional loading. International Journal of Pressure Vessels & Piping, 2013, 110: 50-56  
    25 张成成, 姚卫星. 一种新的多轴高周疲劳寿命预测模型. 力学学报, 2010, 42(6): 1225-1230 (Zhang Chengcheng, Yao Weixing. A new model for life prediction of multiaxial high-cycle fatigue. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1225-1230 (in Chinese))
    26 Shamsaei N, Fatemi A. Effect of microstructure and hardness on non-proportional cyclic hardening coefficient and predictions. Materials Science & Engineering A, 2010, 527(12): 3015-3024  
    27 Mcclaflin D, Fatemi A. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects. International Journal of Fatigue, 2004, 26(7): 773-784  
    28 李静, 孙强, 李春旺等. 一种新的多轴疲劳寿命预测方法. 机械工程学报, 2009, 45(9): 285-290 (Li Jing, Sun Qiang, Li Chunwang, et al. New prediction method for multiaxial fatigue life. Journal of Mechanical Engineering, 2009, 45(9): 285-290 (in Chinese))
    29 Chen X, Gao Q, Sun XF. Low-cycle fatigue under non-proportional loading. Fatigue & Fracture of Engineering Materials & Structures, 1996, 19(7): 839-854  
    30 Shamsaei N, Fatemi A, Socie DF. Multiaxial fatigue evaluation using discriminating strain paths. International Journal of Fatigue, 2011, 33(4): 597-609  
    31 Shamsaei N, Mckelvey SA. Multiaxial life predictions in absence of any fatigue properties. International Journal of Fatigue, 2014, 67(10): 62-72
    32 Borodii MV, Shukaev SM. Additional cyclic strain hardening and its relation to material structure, mechanical characteristics, and lifetime. International Journal of Fatigue, 2007, 29(6): 1184-1191  
    33 刘嘉, 李静, 张忠平. 基于临界面法的剪切式多轴疲劳寿命预测模型. 固体力学学报, 2012, 33(1): 58-62 (Liu Jia, Li Jing, Zhang Zhongping. A multiaxial fatigue life prediction model with shear form based on the critical plane approach. Chinese Journal of Solid Mechanics, 2012, 33(1): 58-62 (in Chinese))
    34 Gómez C, Canales M, Calvo S, et al. High and low cycle fatigue life estimation of welding steel under constant amplitude loading: Analysis of different multiaxial damage models and in-phase and out-ofphase loading effects. International Journal of Fatigue, 2011, 33(4): 578-587  
  • 加载中
计量
  • 文章访问数:  738
  • HTML全文浏览量:  43
  • PDF下载量:  1810
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-14
  • 修回日期:  2016-04-20
  • 刊出日期:  2016-07-18

目录

    /

    返回文章
    返回