EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

摩擦接触问题的比例边界等几何B可微方程组方法

薛冰寒 林皋 胡志强 庞林

薛冰寒, 林皋, 胡志强, 庞林. 摩擦接触问题的比例边界等几何B可微方程组方法[J]. 力学学报, 2016, 48(3): 615-623. doi: 10.6052/0459-1879-15-329
引用本文: 薛冰寒, 林皋, 胡志强, 庞林. 摩擦接触问题的比例边界等几何B可微方程组方法[J]. 力学学报, 2016, 48(3): 615-623. doi: 10.6052/0459-1879-15-329
Xue Binghan, Lin Gao, Hu Zhiqiang, Pang Lin. ANALYSIS OF FRICTIONAL CONTACT PROBLEMS BY SBIGA-BDE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 615-623. doi: 10.6052/0459-1879-15-329
Citation: Xue Binghan, Lin Gao, Hu Zhiqiang, Pang Lin. ANALYSIS OF FRICTIONAL CONTACT PROBLEMS BY SBIGA-BDE METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 615-623. doi: 10.6052/0459-1879-15-329

摩擦接触问题的比例边界等几何B可微方程组方法

doi: 10.6052/0459-1879-15-329
基金项目: 国家自然科学基金资助项目(5113800.
详细信息
    通讯作者:

    薛冰寒,博士研究生,主要研究方向:接触问题、工程结构抗震.E-mail:xuebinghan@mail.dlut.edu.cn

  • 中图分类号: O343

ANALYSIS OF FRICTIONAL CONTACT PROBLEMS BY SBIGA-BDE METHOD

  • 摘要: 摩擦接触问题是计算力学领域最具挑战性的问题之一,接触系统的泛函具有非线性、非光滑的特点,导致接触算法的收敛性与精确性难以保证.因此将比例边界等几何分析(scaled boundary isogeometric analysis,SBIGA)与B可微方程组(B dierential equation,BDE)相结合,提出了求解二维摩擦接触问题的比例边界等几何B可微方程组方法.在比例边界等几何坐标变换的基础上,通过虚功原理推导了关于边界控制点变量的接触平衡方程,表示成B可微方程组形式的接触条件可被严格满足,求解B可微方程组的算法的收敛性有理论保证.此比例边界等几何B可微方程组方法(SBIGA-BDE)只需在接触体边界进行等几何离散,使问题降低一维,能精确描述接触边界,并可通过节点插入算法进行真实接触区域的识别.此外,由于几何建模和数值分析使用相同的基函数,节约了划分网格的时间.以赫兹接触问题和悬臂梁摩擦接触问题为例,通过与解析解及数值计算软件ANSYS计算结果进行对比,验证了该方法求解二维摩擦接触问题的有效性及高精度等特点.

     

  • 1 孙林松, 王德信, 谢能刚. 接触问题有限元分析方法综述. 水利水电科技进展, 2001, 21(3): 18-20 (Sun Linsong, Wang Dexin, Xie Nenggang. A summary of finite element analysis for contact problems. Advances in Science and Technology of Water Resources,2001, 21(3): 18-20 (in Chinese))
    2 赵兰浩, 李同春, 牛志伟. 有初始间隙摩擦接触问题的有限元混合法. 岩土工程学报, 2006, 28(11): 2015-2018 (Zhao Lanhao, Li Tongchun, Niu Zhiwei. Mixed finite element method for contact problems with friction and initial gap. Chinese Journal of Geotechnical Engineering, 2006, 28 (11) : 2015-2018 (in Chinese))
    3 刘永健, 姚振汉. 三维弹性体移动接触边界元法的一类新方案. 工程力学, 2005, 22(1): 6-11 (Liu Yongjian, Yao Zhenhan. A new scheme of BEM for moving contact of 3D elastic solid. Engineering Mechanics , 2005, 22 (1): 6-11 (in Chinese))
    4 杨霞, 肖宏, 陈泽军. 基于轴承边界元法的轧机圆锥滚子轴承的载荷研究. 应用力学学报, 2014, 31(1): 137-143 (Yang Xia, Xiao Hong, Chen Zejun. Analysis of the distribution of mill conical roller bearing boundary element method, Chinese Journal of Applied Mechanism, 2014, 31 (1): 137-143 (in Chinese))
    5 Lorenzis LD, Wriggers P, Hughes TJR. Isogeometric contact: a review. GAMM-Mitteilungen , 2014, 37 (1): 85-123  
    6 Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics & Engineering,2005, 194: 4135-4195  
    7 吴紫俊,黄正东,左兵权等. 等几何分析研究概述. 机械工程学报,2015, 51 (5): 114-129 (Wu Zijun, Huang Zhengdong, Zuo Bingquan,et al. Perspectives on isogeometric analysis, Journal of Mechanical Engineering, 2015, 51 (5): 114-129 (in Chinese))
    8 Hughes TJR, Reali A, Sangalli G. Efficient quadrature for NURBSbased isogeometric analysis. Computer Methods in Applied Mechanics & Engineering, 2010, 199 (5): 301-313
    9 Lorenzis LD, Wriggers P, Zavarise G. A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational Mechanics,2011, 49 (1): 1-20
    10 Dimitri R, De Lorenzis L, Scott MA, et al. Isogeometric large deformation frictionless contact using T-splines. Computer Methods in Applied Mechanics & Engineering, 2014, 269 (1): 394-414
    11 Temizer I, Wriggers P, Hughes TJR. Three-dimensional mortarbased frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics & Engineering,2012, 209 (1): 115-128
    12 Temicer I, Wiggrs P, Hughes TJR. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics & Engineering, 2012, 209 (1):115-128
    13 Song CM, Wolf JP. Consistent Infinitesimal finite-element cell method: three-dimensional vector wave equation. International Journal for Numerical Methods in Engineering, 1996, 39 (13):2189-2208  3.0.CO;2-P">
    14 Deeks A J,Wolf J P. A virtual work derivation of the scaled boundary finite-element method for elastostatics. Computational Mechanics,2002, 28 (6): 489-504  
    15 Liu J Y, Lin G, Li XC, et al. Evaluation of stress intensity factors for multiple cracked circular disks under crack surface tractions with SBFEM. China Ocean Engineering, 2013, 27 (3): 417-426  
    16 Li C, Song C, Man H, et al. 2D dynamic analysis of cracks and interface cracks in piezoelectric composites using the SBFEM. International Journal of Solids & Structures, 2014, 51: 2096-2108  
    17 张勇, 林皋, 胡志强等. 基于等几何分析的比例边界有限元方法. 计算力学学报, 2012, 29 (3): 433-438 (Zhang Yong, Lin Gao, Hu Zhiqiang, et al. Scaled boundary finite element based on isogeometric analisys. Chinese Journal of Computational Mechanics, 2012,29 (3): 433-438 (in Chinese))
    18 Lin G, Zhang Y, Hu ZQ, et al. Scaled boundary isogeometric analysis for 2D elastostatics. Science China Physics, Mechanics and Astronomy, 2014, 57 (2): 286-300  
    19 张勇, 林皋, 胡志强. 比例边界等几何分析方法I:波导本征问题. 力学学报, 2012, 44 (2): 382-392 (Zhang Yong, Lin Gao, Hu Zhiqiang. Scaled boundary isogeometric analysis and its application I: eigenvalue problem of waveguide. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (2): 382-392 (in Chinese))
    20 Natarajan S, Wang J, Song C, et al. Isogeometric analysis enhanced by the scaled boundary finite element method. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 733-762  
    21 Lin G, Zhang Y, Wang Y, et al. Coupled isogeometric and scaled boundary isogeometric approach for earthquake response analysis of dam-reservoir-foundation system. Lisbon: 2012
    22 Rahman MU, Rowlands RE, Cook RD, et al. An iterative procedure for finite-element stress analysis of frictional contact problems. Computers and Structures, 1984, 18 (6): 947-954  
    23 钟万勰. 弹性接触问题的参数变分原理及参数二次规划求解. 计算结构力学及其应用, 1985, 2(1): 1-9 (Zhong Wanxie. Parameter variational principle and parameter quadratic programming method for elastic contact problem. Computational Structural Mechanics and Application, 1985, 2 (1): 1-9 (in Chinese))
    24 Klarbring A. A mathematical programming approach to threedimensional contact problems with friction. Computer Method in Applied Mechanics Engineering, 1986, 58 (2): 175-200  
    25 Leung AYT, Chen GQ, Chen WJ. Smoothing Newton method for solving two-and three-dimensional frictional contact problem. International Journal Numerical Methods in Engineering, 1998, 41 (6): 1001-1027  3.0.CO;2-A">
    26 Li XW, Ai-Kah Soh, Chen WJ. A new nonsmooth model for three dimensional frictional contact problem. Computational Mechanics,2000, 26 (6): 528-535  
    27 Christensen P, Klarbring A, Pang JS, et al. Formulation and comparison of algorithm for frictional contact problems. International Journal Numerical Methods in Engineering, 1998, 42 (1): 145-173  3.0.CO;2-L">
    28 Piegl L, TillerW. The NURBS Book. Berlin: Springer-Verlag, 1997
    29 Song C, Wolf JP. Body loads in scaled boundary finite-element method. Computer Methods in Applied Mechanics & Engineering,1999, 180 (1-2): 117-135  
    30 Pang JS. Newton's method for B-differentiable equations. Mathematics of Operations Research, 1990, 15 (2): 311-341  
  • 加载中
计量
  • 文章访问数:  789
  • HTML全文浏览量:  75
  • PDF下载量:  867
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 修回日期:  2015-11-03
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回