EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构随机动力稳定性的定量分析方法

李杰 徐军

李杰, 徐军. 结构随机动力稳定性的定量分析方法[J]. 力学学报, 2016, 48(3): 702-713. doi: 10.6052/0459-1879-15-304
引用本文: 李杰, 徐军. 结构随机动力稳定性的定量分析方法[J]. 力学学报, 2016, 48(3): 702-713. doi: 10.6052/0459-1879-15-304
Li Jie, Xu Jun. A QUANTITATIVE APPROACH TO STOCHASTIC DYNAMIC STABILITY OF STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 702-713. doi: 10.6052/0459-1879-15-304
Citation: Li Jie, Xu Jun. A QUANTITATIVE APPROACH TO STOCHASTIC DYNAMIC STABILITY OF STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 702-713. doi: 10.6052/0459-1879-15-304

结构随机动力稳定性的定量分析方法

doi: 10.6052/0459-1879-15-304
基金项目: 国家自然科学基金资助项目(51261120374,9131530.
详细信息
    通讯作者:

    李杰,教授,主要研究方向:随机动力系统分析、混凝土随机损伤力学与生命线工程抗灾.E-mail:lijie@tongji.edu.cn

  • 中图分类号: O317+3

A QUANTITATIVE APPROACH TO STOCHASTIC DYNAMIC STABILITY OF STRUCTURES

  • 摘要: 提出了结构随机动力稳定性的定量分析方法,讨论了经典的随机动力稳定性概念,指出结构动力稳定性不仅与结构参数有关,也与作用在结构上的外部载荷密切相关,据此引入了一种判定结构动力稳定性的新准则,明确了结构随机动力稳定性的基本涵义.在概率守恒原理基础上,推导了概率耗散系统的广义概率密度演化方程.引入结构动力失稳的物理机制作为引起概率耗散的驱动力,利用概率耗散系统概率密度演化方程、可以方便获得结构响应的概率密度演化过程,从而定量求解结构的动力稳定概率.据此,可以定量评价结构系统依概率为1或依给定概率意义上的结构随机动力稳定性.采用本文所建议方法对典型结构动力系统进行了随机动力稳定性分析,并与蒙特卡洛方法计算结果进行对比.数值结果表明了所建议方法的有效性.

     

  • 1 Ba?ant ZP, Cedolin L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Singapore: World Scientific Publishing Company Incorporated, 2010
    2 周绪红. 结构稳定理论. 北京:高等教育出版社, 2010 (Zhou Xuhong. Theory of Structural Stability. Beijing: Higher Education Press, 2010 (in Chinese))
    3 Simitses GJ, Hutchinson J. An introduction to the elastic stability of Structures. Journal of Applied Mechanics, 1976, 43(2): 383
    4 Lasallae J, Lefschetz S. Stability by Lyapunov's Direct Method with Applications. New York: Academic Press, 1960
    5秦元勋, 王慕秋, 王联. 运动稳定性理论与应用. 北京:科学出版社, 1981 (Qin Yuanxun, Wang Muqiu, Wang Lian. Motion Stability Theory and Application. Beijing: Science Press, 1981 (in Chinese))
    6 Ariaratnam S, Tam D. Moment stability of coupled linear systems under combined harmonic and stochastic excitation. In: Proc. of Stochastic Problems in Dynamics, Pitman, London, 1977
    7 Potapov V, Marasanov A. The investigation of the stability of elastic and viscoelastic rods under a stochastic excitation. International Journal of Solids and Structures, 1997, 34(11): 1367-1377  
    8 Ariaratnam S, Ly B. Almost-sure stability of some linear stochastic Systems. Journal of Applied Mechanics, 1989, 56(1): 175-178  
    9 Lin Y, Ariaratnam S. Stability of bridge motion in turbulent winds. Journal of Structural Mechanics, 1980, 8(1): 1-15  
    10 Bucher CG, Lin YK. Stochastic stability of bridges considering coupled Modes. Journal of Engineering Mechanics, 1988, 114(12):2055-2071  
    11 Xie WC. Dynamic stability of structures. New York: Cambridge University Press, 2006
    12 Williamson EB, Rungamornrat J. Numerical analysis of dynamic stability under random excitation. Engineering Structures, 2002,24(4): 479-490  
    13 Arnold L. A formula connecting sample and moment stability of linear stochastic systems. SIAM Journal on Applied Mathematics,1984, 44(4): 793-802  
    14 Kozin F. On almost sure stability of linear systems with random coe fficients. Journal of Mathematics and Physics, 1963, 42: 59-67  
    15 Ariaratnam S, Tam D. Moment stability of coupled linear systems under combined harmonic and stochastic excitation. In: Proc. of Stochastic Problems in Dynamics, Pitman, London, 1977: 90-103
    16 Ma F, Caughey T. Moment stability of linear stochastic difference Systems. Mechanics Research Communications, 1981, 8(3): 143-151  
    17 Kozin F. A survey of stability of stochastic systems. Automatica,1969, 5(1): 95-112  
    18 Kushner HJ. Stochastic Stability. Germany: Springer, 1972
    19 朱位秋. 随机振动. 北京: 科学出版社, 1992 (ZhuWeiqiu. Random Vibration. Beijing: Science Press, 1992 (in Chinese))
    20 Lin YK, Li QC. Stochastic stability of wind excited structures. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54:75-82
    21 Lin YK. Stochastic stability of wind-excited long-span bridges. Probabilistic Engineering Mechanics, 1996, 11(4): 257-261  
    22 Xu J, Li J. An energetic criterion for dynamic instability of structures under arbitrary excitations. International Journal of Structural Stability and Dynamics, 2015. 15(2): 1-32
    23 李杰, 徐军. 结构动力稳定性判定新准则. 同济大学学报:自然科学版, 2015, 43(7): 965-971 (Li Jie, Xu Jun. Novel criterion for identification of dynamic stability of structures. Journal of Tongji University (Natural Science Edition), 2015, 43 (7): 965-971 (in Chinese))
    24 Li J, Chen JB. The probability density evolution method for dynamic response analysis of nonlinear stochastic structures. International Journal for Numerical Methods in Engineering, 2006, 65(6): 882-903  
    25 Li J, Chen JB. Stochastic Dynamics of Structures. Singapore: John Wiley & Sons, 2009
    26 Li J, Chen JB. The principle of preservation of probability and the generalized density evolution equation. Structural Safety, 2008,30(1): 65-77  
    27 Li J, Chen JB. The number theoretical method in response analysis of nonlinear stochastic structures. Computational Mechanics, 2006,39(6): 693-708
    28 Hua LK, Wang Y. Applications of Number Theory to Numerical Analysis. Germany: Springer Science & Business Media, 2012
    29 Nawrotzki P, Eller C. Numerical stability analysis in structural dynamics. Computer Methods in Applied Mechanics and Engineering,2000, 189(3): 915-929  
    30 Xu J, Chen JB, Li J. Probability density evolution analysis of engineering structures via cubature points. Computational Mechanics,2012, 50(1): 135-156  
  • 加载中
计量
  • 文章访问数:  800
  • HTML全文浏览量:  50
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-05
  • 修回日期:  2015-12-02
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回