EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒介质固-流态转变的理论分析及实验研究

费明龙 徐小蓉 孙其诚 周公旦 金峰

费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1): 48-55. doi: 10.6052/0459-1879-15-290
引用本文: 费明龙, 徐小蓉, 孙其诚, 周公旦, 金峰. 颗粒介质固-流态转变的理论分析及实验研究[J]. 力学学报, 2016, 48(1): 48-55. doi: 10.6052/0459-1879-15-290
Fei Minglong, Xu Xiaorong, Sun Qicheng, Zhou Gordon G D, Jin Feng. STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55. doi: 10.6052/0459-1879-15-290
Citation: Fei Minglong, Xu Xiaorong, Sun Qicheng, Zhou Gordon G D, Jin Feng. STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 48-55. doi: 10.6052/0459-1879-15-290

颗粒介质固-流态转变的理论分析及实验研究

doi: 10.6052/0459-1879-15-290
基金项目: 国家自然科学基金项目(11272048,51239006),欧盟MarieCurie国际项目(IRSES-294976),美国全球创新计划(GlobalInnovationInitiative)和清华大学自主科研计划资助.
详细信息
    通讯作者:

    孙其诚,副研究员,主要研究方向:颗粒介质本构理论及应用.E-mail:qcsun@tsinghua.edu.cn

  • 中图分类号: O414.14

STUDIES ON THE TRANSITION BETWEEN SOLID- AND FLUID-LIKE STATES OF GRANULAR MATERIALS

  • 摘要: 颗粒介质由大量离散的颗粒聚集而成,因而与传统固体和流体不同,运动过程中的颗粒介质中可能同时存在多种流态及其相互间复杂的转换过程. 颗粒介质弹性失稳机理、不可恢复应变量化是研究颗粒介质固态和流态及固-流态转变的关键. 在前期建立的双颗粒温度热力学(two-granular-temperature, TGT) 理论基础上,确定了颗粒介质的弹性稳定性条件,建立了不可恢复应变流动法则,搭建了描述颗粒固态-液态及其相互转化的简单模型. 颗粒堆积体坍塌过程是典型的颗粒介质固态和流态及其转变过程,因此本文首先开展了25 167 个陶颗粒堆积体坍塌过程的实验研究,并使用基于TGT 理论的物质点方法和离散元方法对物理实验进行了模拟. 结果表明,模型数值结果与物理实验在颗粒堆坍塌过程中的形态、速度分布等细节上吻合很好,同时也发现了现阶段所使用的物质点方法和TGT 理论的不足. 初步说明TGT 理论可以实现颗粒介质固态和流态,以及状态转变的描述.

     

  • 1 Forterre Y, Pouliquen O. Flows of dense granular media. Annual Review of Fluid Mechanics, 2008, 40(1): 1-24  
    2 Jop P. Rheological properties of dense granular flows. Comptes Rendus Physique, 2015, 16(1): 62-72
    3 Midi GDR. On dense granular flows. The European Physical Journal E, 2004, 14(4): 341-365  
    4 Jop P, Forterre Y, Pouliquen O. A constitutive law for dense granular flows. Nature, 2006, 441(7094): 727-730  
    5 Delannay R, Louge M, Richard P, et al. Towards a theoretical picture of dense granular flows down inclines. Nature Materials, 2007,6: 99-108  
    6 Kamrin K. Nonlinear elasto-plastic model for dense granular flow. International Journal of Plasticity, 2010, 26(2): 167-188  
    7 Zheng H, Peng Z, Fu L, et al. Expression for the granular elastic energy. Physical Review E, 2012, 85: 051304  
    8 Sun Q, Jin F, Wang G, et al. On granular elasticity. Scientific Reports,2015, 5: 9652  
    9 Collins IF, Houlsby GT. Application of thermomechanical principles to the modelling of geotechnical materials. Proceeding of Royal Society A, 1997, 453: 1975-2001  
    10 Houlsby GT, Puzrin AM. Principles of Hyperplasticity: An Approach to Plasticity Theory Based on Thermodynamic Principles. Springer Science & Business Media, 2007
    11 Jiang Y, Liu M. Granular elasticity without the Coulomb condition. Physical Review Letters, 2003, 91(14): 144301  
    12 Jiang Y, Liu M. From elasticity to hypoplasticity: dynamics of granular solids. Physical Review Letters, 2007, 99(10): 105501  
    13 Jiang Y, Liu M. Granular solid hydrodynamics. Granular Matter,2009, 11(3): 139-156  
    14 Jiang Y, Liu M. Applying GSH to a wide range of experiments in granular media. The European Physical Journal E, 2015, 38(3): 1-27
    15 孙其诚. 颗粒介质的结构与热力学. 物理学报, 2015, 64 (7):076101 (Sun Qicheng. Grnaualr structure and non-equlinrium thermodyanmcis. Acta Physica Sinica, 2015, 64 (7): 076101 (in Chinese))
    16 Kerswell RR, Lacaze L. Axisymmetric granular collapse: A transient 3D flow test of viscoplasticity. Physical Review Letters, 2009,102(10): 108305  
    17 Lagree P, Staron L, Popinet S. The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a (I)-rheology. Journal of Fluid Mechanics, 2011, 686: 378-408  
    18 Liu AJ, Nagel SR. Nonlinear dynamics: Jamming is not just cool any more. Nature, 1998, 396(6706): 21-22  
    19 Trappe V, Prasad V, Cipelletti L, et al. Jamming phase diagram for attractive particles. Nature, 2001, 411(6839): 772-775  
    20 Bi D, Zhang J, Chakraborty B, et al. Jamming by shear. Nature,2011, 480(7377): 355-358  
    21 Drucker DC. A more fundamental approach to plastic stress-strain relations. ASME-AMER Soc Mechanical Eng 345 E 47TH ST, New York, NY 10017, 1951
    22 Drucker DC, Prager W. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 1952, 10: 157-165
    23 张雄, 廉艳平, 刘岩等. 物物质点法. 清华大学出版社, 2013 (Zhang Xiong, Lian Yanping, Liu Yan, et al. Material Point Method. Tsinghua University Press, 2013 (in Chinese))
    24 Jenkins J. Dense shearing flows of inelastic disks. Physics of Fluids,2006, 18(10): 103307  
    25 孙其诚, 厚美瑛, 金峰. 颗粒介质物理与力学. 北京: 科学出版社,2011 (Sun Qicheng, Hou Meiying, Jin Feng. Physics and Mechanics of Granular Materials. Beijing: Science Press, 2011 (in Chinese))
    26 Kozicki J, Donze FV. YADE-OPEN DEM: an open-source software using a discrete element method to simulate granular material. Engineering Computations, 2009, (26): 786-805  
    27 Antypov D, Elliott JA. On an analytical solution for the damped Hertzian spring. Europhysics Letters, 2011, 94(5): 50004  
    28 Rycroft CH, Kamrin K, Bazant MZ. Assessing continuum postulates in simulations of granular flow. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 828-839  
  • 加载中
计量
  • 文章访问数:  1256
  • HTML全文浏览量:  117
  • PDF下载量:  913
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-30
  • 修回日期:  2015-08-24
  • 刊出日期:  2016-01-18

目录

    /

    返回文章
    返回