EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类多孔固体的等效偶应力动力学梁模型

苏文政 刘书田

苏文政, 刘书田. 一类多孔固体的等效偶应力动力学梁模型[J]. 力学学报, 2016, 48(1): 111-126. doi: 10.6052/0459-1879-15-210
引用本文: 苏文政, 刘书田. 一类多孔固体的等效偶应力动力学梁模型[J]. 力学学报, 2016, 48(1): 111-126. doi: 10.6052/0459-1879-15-210
Su Wenzheng, Liu Shutiany. EFFECTIVE COUPLE-STRESS DYNAMIC BEAM MODEL OF A TYPICAL CELLULAR SOLID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 111-126. doi: 10.6052/0459-1879-15-210
Citation: Su Wenzheng, Liu Shutiany. EFFECTIVE COUPLE-STRESS DYNAMIC BEAM MODEL OF A TYPICAL CELLULAR SOLID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 111-126. doi: 10.6052/0459-1879-15-210

一类多孔固体的等效偶应力动力学梁模型

doi: 10.6052/0459-1879-15-210
基金项目: 国家自然科学基金(11002031),国家重点基础研究计划(973计划)课题(2011CB610304)和辽宁省高校优秀人才支持计划(LJQ2012040)资助项目.
详细信息
    通讯作者:

    苏文政,副教授,主要研究方向:复合材料力学,计算固体力学.E-mail:wzhsu@djtu.edu.cn

  • 中图分类号: O326

EFFECTIVE COUPLE-STRESS DYNAMIC BEAM MODEL OF A TYPICAL CELLULAR SOLID

  • 摘要: 一维多孔固体结构可采用等效连续介质梁模型来研究其动力学行为. 当类梁结构的高度尺寸和多孔固体单胞结构尺寸相近时,等效模型的力学行为会产生尺寸效应现象. 等效经典模型由于不包含尺度参数而无法描述尺寸相关特点,而广义连续介质力学模型则可以准确地考虑尺寸效应的影响. 基于偶应力理论,对一类单胞含有圆形孔洞的周期性多孔固体类梁结构,给出了分析其横向自由振动的等效连续介质铁木辛柯梁模型. 通过对单胞分析,在应变能等价和几何平均的意义下,定义了等效偶应力介质的材料常数. 利用已有的材料常数,推导了等效铁木辛柯梁的动力学微分方程. 将实际多孔固体结构进行完全的动力学有限元离散计算,所获得的解作为精确解以检验等效梁模型所获得的频率和振型的精度. 振型的比较借助于模态置信准则矩阵方法. 大量算例表明,等效偶应力铁木辛柯梁模型在频率和振型两方面均具有较高的计算精度. 重点研究了单胞孔径的相对大小、类梁结构高度与单胞尺寸比以及类梁结构长高比对等效梁模型精度的影响. 在此基础上,偏保守地建议了多孔固体类梁结构自振分析方法.

     

  • 1 Gibson LJ, Ashby MF. Cellular Solids: Structure and Properties. Cambridge: Cambidge University Press, 1997
    2 Ashby MF, Evans AG, Fleck NA, et al. Metal Foams: A Design Guide. Boston: Butterworth-Heinemann, 2000
    3 Onck PR, Andrews EW, Gibson LJ. Size e ects in ductile cellular solids. Part I: Modeling. International Journal of Mechanical Sciences,2001, 43(3): 681-699  
    4 Andrews EW, Gioux G, Onck P, et al. Size e ects in ductile cellular solids. Part II: Experimental results. International Journal of Mechanical Sciences, 2001, 43(3): 701-713  
    5 Dai GM, Zhang WH. Size e ects of basic cell in static analysis of sandwich beams. International Journal of Solids and Structures,2008, 45(9): 2512-2533  
    6 Liu S, Su W. E ective couple-stress continuum model of cellular solids and size e ects analysis. International Journal of Solids and Structures, 2009, 46(14-15): 2787-2799
    7 苏文政, 刘书田. 基于偶应力理论的格栅材料等效介质模型. 力 学学报, 2008, 40(6): 776-785 (Su Wenzheng, Liu Shutian. E ective continuum model of grid material based on couple-stress theory. Chinese Journal of Theoretical and Applied Mechanics, 2008,40 (6):776-785 (in Chinese))
    8 蔡园武, 徐亮, 程耿东. 正六角形单胞周期性蜂窝板等效刚度研 究. 大连理工大学学报, 2014, 54(4): 377-383 (Cai Yuanwu, Xu Liang, Cheng Gengdong. Study of e ective sti ness of periodic honeycomb plate with regular hexagonal unit cell. Journal of Dalian University of Technology, 2014, 54(4): 377-383 (in Chinese))
    9 Yi S, Xu L, Cheng G, et al. FEM formulation of homogenization method for e ective properties of periodic heterogeneous beam and size e ect of basic cell in thickness direction. Computers & Structures,2015, 156: 1-11  
    10 Burgueno R, Quagliata MJ, Mohanty AK, et al. Hierarchical cellular designs for load-bearing biocomposite beams and plates. Materials Science and Engineering A, 2005, 390(1-2): 178-187  
    11 邱克鹏, 吴晨, 张卫红. 蜂窝夹芯结构吸波性能的有限元计算分 析. 中国科学:物理学力学天文学, 2013, 43(9): 1057-1064 (Qiu Kepeng, Wu Chen, Zhang Weihong. Numerical analysis of absorbing property for structural absorbing material (SAM) with honeycomb cores. Scientia Sinica Physica, Mechanica & Astronomica,2013, 43(9): 1057-1064 (in Chinese))
    12 张卫红, 段文东, 许英杰等. 六边形蜂窝等效面外剪切模量预测 及其尺寸效应. 力学学报, 2013, 45(2): 288-292 (Zhang Weihong, Duan Wendong, Xu Yingjie, et al. Predictions of e ective out-plane shear modulus and size e ect of hexagonal honeycomb. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45 (2): 288-292 (in Chinese))
    13 张卫红, 骆金威, 戴高明等. 周期性多孔材料等效剪切模量与尺 寸效应研究. 力学学报, 2011, 43(1): 144-153 (Zhang Weihong, Luo Jinwei, Dai Gaoming, et al. Numerical predictions of e ective shear modulus and size e ect for periodic cellular materials. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43 (1):144-153 (in Chinese))
    14 Dai G, Zhang W. Cell size e ects for vibration analysis and design of sandwich beams. Acta Mechanica Sinica, 2009, 25(3): 353-365  
    15 Banerjee S, Bhaskar A. The applicability of the e ective medium theory to the dynamics of cellular beams. International Journal of Mechanical Sciences, 2009, 51(8): 598-608  
    16 Su W, Liu S. Vibration analysis of periodic cellular solids based on an e ective couple-stress continuum model. International Journal of Solids and Structures, 2014, 51(14): 2676-2686  
    17 Tekoglu C, Onck PR. Size e ects in two-dimensional Voronoi foams: A comparison between generalized continua and discrete models. Journal of the Mechanics and Physics of Solids, 2008,56(12): 3541-3564  
    18 孟晗, 辛锋先, 卢天健. 多孔纤维吸声材料填充蜂窝结构的声学 性能. 中国科学: 物理学力学天文学, 2014, 44(6): 599-609 (Meng Han, Xin Fengxian, Lu Tianjian. A coustical properties of honeycomb structures filled with fibrous absorptive materials. Scientia Sinica Physica, Mechanica & Astronomica. 2014, 44 (6): 599-609 (in Chinese))
    19 Yan J, Hu WB, Wang ZH, et al. Size e ect of lattice material and minimum weight design. Acta Mechanica Sinica, 2014, 30(2): 191-197  
    20 虞吉林. 考虑微结构的固体力学的进展和若干应用. 力学进展,1985, 15(1): 82-89 (Yu Jilin. Progress and applications of solid mechanics considering microstructure. Advances in Mechanics, 1985,15 (1): 82-89 (in Chinese))
    21 Eringen AC. Microcontinuum Field Theories. New York Springer,1999
    22 胡更开, 刘晓宁, 荀飞. 非均匀微极介质的有效性质分析. 力学进 展, 2004, 34(2): 195-214 (Hu Gengkai, Liu Xiaoning, Xun Fei. Micromechanics of heterogeneous micropolar mediums. Advances in Mechanics, 2004, 34(2): 195-214(in Chinese))
    23 Mindlin RD. Influence of couple-stresses on stress concentrations. Experimental Mechanics, 1963, 3(1): 1-7  
    24 任树伟, 辛锋先, 卢天健. 考虑尺度效应的微平板声振耦合特性研 究. 中国科学: 技术科学, 2014, 44(2): 201-208 (Ren Shuwei, Xin Fengxian, Lu Tianjian. Vibroacoustic characteristics of micro-plates considering scale e ect. Science China: Technological Sciences,2014, 44(2): 201-208
    25 王晓明, 王飞, 赵学增等. 基于Cosserat 理论的四边简支自由振动 微平板尺度效应研究. 固体力学学报, 2012, 33(1): 63-68 (Wang Xiaoming, Wang Fei, Zhao Xuezeng, et al. On the size e ects in a freely-vibrating micro-plate with the four edges simply-supported based on the Cosserat theroy. Chinese Journal of Solid Mechanics,2012, 33(1): 63-68 (in Chinese))
    26 Asghari M, Kahrobaiyan MH, Rahaeifard M, et al. Investigation of the size e ects in Timoshenko beams based on the couple stress theory. Archive of Applied Mechanics, 2011, 81(7): 863-874  
    27 李莉, 陈万吉, 郑楠. 修正偶应力理论层合薄板稳定性模型及尺度 效应. 工程力学, 2013, 30(5): 1-7 (Li Li, Chen Wanji, Zheng Nan. Model of composite laminated thin plate based on modified couple stress theory and buckling analysis of scale e ects. Engineering Mechanics,2013, 30 (5): 1-7 (in Chinese))
    28 Lakes R, Drugan WJ. Bending of a cosserat elastic bar of square cross section: theory and experiment. Journal of Applied Mechanics,2015, 82(9): 091002  
    29 Han SM, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories. Journal of Sound and Vibration,1999, 225(5): 935-988  
    30 Bigoni D, Drugan WJ. Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. Journal of Applied Mechanics, Transactions ASME, 2007, 74(4): 741-753  
    31 夏桂云, 曾庆元. 深梁理论的研究现状与工程应用. 力学与实践,2015, 37(3): 302-316 (Xia Guiyun, Zeng Qingyuan. Timoshenko beam theory and its applications. Mechanics in Engineering, 2015,37(3): 302-316 (in Chinese))
    32 Bouyge F, Jasiuk I, Boccara S, et al. A micromechanically based couple-stress model of an elastic orthotropic two-phase composite. European Journal of Mechanics, A/Solids, 2002, 21(3): 465-481  
    33 Ewins DJ. Modal Testing: Theory, Practice and Application. Baldock: Research Studies Press, 2000
  • 加载中
计量
  • 文章访问数:  995
  • HTML全文浏览量:  56
  • PDF下载量:  839
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-09
  • 修回日期:  2015-09-01
  • 刊出日期:  2016-01-18

目录

    /

    返回文章
    返回