EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

帘线/橡胶复合材料各向异性黏-超弹性本构模型

黄小双 彭雄奇 张必超

黄小双, 彭雄奇, 张必超. 帘线/橡胶复合材料各向异性黏-超弹性本构模型[J]. 力学学报, 2016, 48(1): 140-145. doi: 10.6052/0459-1879-15-189
引用本文: 黄小双, 彭雄奇, 张必超. 帘线/橡胶复合材料各向异性黏-超弹性本构模型[J]. 力学学报, 2016, 48(1): 140-145. doi: 10.6052/0459-1879-15-189
Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao. AN ANISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR CORD-RUBBER COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 140-145. doi: 10.6052/0459-1879-15-189
Citation: Huang Xiaoshuang, Peng Xiongqi, Zhang Bichao. AN ANISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR CORD-RUBBER COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 140-145. doi: 10.6052/0459-1879-15-189

帘线/橡胶复合材料各向异性黏-超弹性本构模型

doi: 10.6052/0459-1879-15-189
基金项目: 国家自然科学基金资助项目(11172171).
详细信息
    通讯作者:

    彭雄奇,教授,主要研究方向:力学本构、复合材料结构设计、复合材料成型.E-mail:xqpeng@sjtu.edu.cn

  • 中图分类号: TB121,TB332

AN ANISOTROPIC VISCO-HYPERELASTIC CONSTITUTIVE MODEL FOR CORD-RUBBER COMPOSITES

  • 摘要: 帘线/橡胶复合材料广泛应用于轮胎等重要工程领域,为了描述其在服役条件下的大变形、非线性、各向异性和高应变率等材料力学行为,基于纤维增强复合材料连续介质力学理论,提出了一种考虑应变率效应的帘线/橡胶复合材料各向异性黏-超弹性本构模型. 该模型中单位体积的应变能被解耦为便于参数识别的基体等容变形能、帘线拉伸变形能、剪切应变能和黏性应变能四部分. 给出了模型参数的确定方法,并通过拟合文献中单轴拉伸、偏轴拉伸实验数据,得到了模型参数. 利用该模型预测了不同加载和变形条件下的力学行为,并将预测结果与实验结果对比分析. 结果表明, 考虑黏性模型和不考虑黏性模型对不同应变率变形条件下的预测结果相差很大,且考虑黏性模型的预测结果与实验结果吻合很好. 因此,与不考虑黏性模型相比,所提出的各向异性黏-超弹性本构模型能更好地表征帘线/橡胶复合材料在大变形、高应变率条件下的力学特性.

     

  • 1 郭国栋, 彭雄奇, 赵宁. 一种考虑剪切作用的各向异性超弹性本 构模型. 力学学报, 2013, 45(3): 451-455 (Guo Guodong, Peng Xiongqi, Zhao Ning. An anisotropic hyperelastic constitutive model with shear interaction for cord-rubber tire composites. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 451-455 (in Chinese))
    2 Akasaka T, Kabe K, Sako K. Bending sti ness of a tire-belt structure with steel cords. Composites Science and Technology, 1985, 24(3):215-230  
    3 Clark SK. Theory of the elastic net applied to cord-rubber composites. Rubber Chemistry and Technology, 1983, 56(2): 372-389  
    4 A dl J, Kardos J. The Halpin-Tsai equations: A review. Polymer Engineering & Science, 1976, 16(5): 344-352  
    5 Mansor M, Sapuan S, Zainudin E, et al. Rigidity analysis of kenaf thermoplastic composites using Halpin-Tsai equation. In: Proc. of Conference of in Applied Mechanics and Materials, 2014: 29-33
    6 Giner E, Vercher A, Marco M, et al. Estimation of the reinforcement factor for calculating E2 with the Halpin-Tsai equations using the finite element method. Composite Structures, 2015, 124: 402-408  
    7 Helnwein P, Liu CH, Meschke G, et al. A new 3-D finite element model for cord-reinforced rubber composites—application to analysis of automobile tires. Finite Elements in Analysis and Design,1993, 14(1): 1-16  
    8 Meschke G, Helnwein P. Large-strain 3D-analysis of fibrereinforced composites using rebar elements: Hyperelastic formulations for cords. Computational Mechanics, 1994, 13(4): 241-254  
    9 Yanjin G, Guoqun Z, Gang C. 3-dimensional non-linear FEM modeling and analysis of steady-rolling of radial tires. Journal of Reinforced Plastics and Composites, 2011, 30(3): 229-240  
    10 Itskov M, Aksel N. A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. International Journal of Solids and Structures, 2004,41(14): 3833-3848  
    11 Brown LW, Smith LM. A simple transversely isotropic hyperelastic constitutive model suitable for finite element analysis of fiber reinforced elastomers. Journal of Engineering Materials and Technology,2011, 133(2): 021021  
    12 Ciarletta P, Izzo I, Micera S, et al. Sti ening by fiber reinforcement in soft materials: A hyperelastic theory at large strains and its application. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(7): 1359-1368  
    13 王友善, 王锋, 王浩. 超弹性本构模型在轮胎有限元分析中的应 用. 轮胎工业, 2009, 29(5): 277-282 (Wang Youshan, Wang Feng, Wang Hao. Application of hyperelastic constitutive models in finite element analysis on tires. Tire Industry, 2009, 29(5): 277-282 (in Chinese))
    14 Peng X, Guo Z, Moran B. An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. Journal of Applied Mechanics, 2006, 73(5): 815-824  
    15 Brieu M, Diani J, Bhatnagar N. A new biaxial tension test fixture for uniaxial testing machine-A validation for hyperelastic behavior of rubber-like materials. Journal of Testing and Evaluation, 2007,35(4): 364
    16 Aboshio A, Green S, Ye J. New constitutive model for anisotropic hyperelastic biased woven fibre reinforced composite. Plastics, Rubber and Composites, 2014, 43(7): 225-234  
    17 Guerin HL, Elliott DM. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. Journal of Orthopaedic Research, 2007, 25(4):508-516  
    18 Eiamnipon N, Nimdum P, Renard J, et al. Experimental investigation on high strain rate tensile behaviors of steel cord-rubber composite. Composite Structures, 2013, 99: 1-7  
    19 Choi SS, Kim OB. Influence of specimen directions on recovery behaviors from circular deformation of polyester cord-inserted rubber composites. Journal of Industrial and Engineering Chemistry, 2014,20(1): 202-207  
    20 Rao S, Daniel IM, Gdoutos EE. Mechanical properties and failure behavior of cord/rubber composites. Applied Composite Materials,2004, 11(6): 353-375  
    21 Zhang F, Kuang Z, Wan Z, et al. Viscoelastic constitutive model of cord-rubber composite. Journal of Reinforced Plastics and Composites,2005, 24(12): 1311-1320  
    22 Shim V, Yang L, Lim C, et al. A visco-hyperelastic constitutive model to characterize both tensile and compressive behavior of rubber. Journal of Applied Polymer Science, 2004, 92(1): 523-531  
    23 Anani Y, Alizadeh Y. Visco-hyperelastic constitutive law for modeling of foam's behavior. Materials & Design, 2011, 32(5): 2940-2948  
    24 Zhurov AI, Evans SL, Holt CA, et al. A nonlinear compressible transversely-Isotropic viscohyperelastic constitutive model of the periodontal ligament. In: Proc. of ASME 2008 International Mechanical Engineering Congress and Exposition, 2008: 707-719
    25 Spencer AJM. Continuum Theory of the Mechanics of Fibrereinforced Composites. New York: Springer, 1984
    26 Jiang Y, Wang Y, Peng X. A visco-hyperelastic constitutive model for human spine ligaments. Cell Biochemistry and Biophysics, 2015,71(2): 1147-1156  
    27 彭雄奇, 王宇. 腰椎椎间植骨融合有限元分析. 力学学报, 2011,43(2): 381-389 (Peng Xiongqi, Wang Yu. Finite elment analysis on lumbar interbody fusion. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 451-455 (in Chinese))
    28 Yeoh O. Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chemistry and Technology, 1990,63(5): 792-805  
    29 Holzapfel GA, Gasser TC. A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Computer Methods in Applied Mechanics and Engineering,2001, 190(34): 4379-4403  
    30 Peng X, Guo Z, Du T, et al. A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites Part B: Engineering, 2013, 52: 275-281  
  • 加载中
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  175
  • PDF下载量:  1103
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-27
  • 修回日期:  2015-09-16
  • 刊出日期:  2016-01-18

目录

    /

    返回文章
    返回