EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形喷管喷口气泡演化的实验研究

胡俊 姜建玉 于勇 李婷婷

胡俊, 姜建玉, 于勇, 李婷婷. 环形喷管喷口气泡演化的实验研究[J]. 力学学报, 2016, 48(1): 86-94. doi: 10.6052/0459-1879-15-183
引用本文: 胡俊, 姜建玉, 于勇, 李婷婷. 环形喷管喷口气泡演化的实验研究[J]. 力学学报, 2016, 48(1): 86-94. doi: 10.6052/0459-1879-15-183
Hu Jun, Jiang Jianyu, Yu Yong, Li Tingting. EXPERIMENTAL INVESTIGATION OF BUBBLE EVOLUTION ON ANNULAR NOZZLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 86-94. doi: 10.6052/0459-1879-15-183
Citation: Hu Jun, Jiang Jianyu, Yu Yong, Li Tingting. EXPERIMENTAL INVESTIGATION OF BUBBLE EVOLUTION ON ANNULAR NOZZLE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 86-94. doi: 10.6052/0459-1879-15-183

环形喷管喷口气泡演化的实验研究

doi: 10.6052/0459-1879-15-183
基金项目: 国家自然科学基金资助项目(11372041).
详细信息
    通讯作者:

    胡俊,副教授,主要研究方向:流体力学、飞行器设计、微重力燃烧.E-mail:hujun@bit.edu.cn

  • 中图分类号: O359+.1

EXPERIMENTAL INVESTIGATION OF BUBBLE EVOLUTION ON ANNULAR NOZZLE

  • 摘要: 水下气泡的发展演化及气泡动力学行为是气液两相动力学的基础理论与水下射流应用的重要基础. 环形喷管/喷口形成的气泡及气体射流具有其不同于圆孔实心射流的特殊表现与规律机制,随着同心筒破水发射等特殊应用的出现,环形喷口气体射流/泡流的基础现象观测和机制分析成为迫切的需求. 基于环形喷管的设计和水下射流条件的分析,设计建立了一套环形喷管水箱实验系统,对水下环形喷管喷口气泡发展演化过程进行了初步的实验研究. 为观测研究气体通过环形喷管气泡生长发展过程,在较低压力、较低流速下,采用高速摄影仪记录气泡生长及发展演化过程. 结合对气泡发展演化过程的图像处理与分析,研究分析了环形喷口气泡形成区制、气泡生长过程形态发展特点、以及气泡形成时间及气泡体积变化特点. 研究表明:在本实验气体流量范围内(50.8~237.3 dm3/min),环形喷口气泡发展演化过程呈现较为明显的三周期区制,前泡尾流影响是环形气泡呈三周期区制的主要原因;不同周期内的气泡形成时间具有较稳定规律,并受到流量影响;气泡生长过程中有较为明显的下沉、回升特征;气泡表面张力、液体惯性与流动的共同作用,造成了典型的气泡顶部坍塌现象.

     

  • 1 Davidson L, Amick EH. Formation of gas bubbles at horizontal orifices. AIChE Journal, 1956, 2(3): 337-342  
    2 Walters JK, Davidson JF. The initial motion of a gas bubble formed in an inviscid liquid. Journal of Fluid Mechanics, 1963, 17(3): 321-336  
    3 Davidson JF, Schueler BOG. Bubble formation at an orifice in a viscous liquid. Transactions of the Institution of Chemical Engineers,1960, 38: 144-154
    4 Davidson JF, Schueler BOG. Bubble formation at an orifice in an inviscid liquid. Transactions of the Institution of Chemical Engineers,1960, 38: 335-342
    5 Marmur A, Rubin E. A theoretical model for bubble formation at an orifice submerged in an inviscid liquid. Chemical Engineering Science, 1976, 31(6): 453-463  
    6 Satyanarayan A, Kumar R, Kuloor NR. Studies in bubble formation- II bubble formation under constant pressure conditions. Chemical Engineering Science, 1969, 24(4): 749-761  
    7 Ramakrishnan S, Kumar R, Kuloor NR. Studies in bubble formation-I bubble formation under constant flow conditions. Chemical Engineering Science, 1969, 24(4): 731-747  
    8 Badam VK, Buwa V, Durst F. Experimental investigations of regimes of bubble formation on submerged orifices under constant flow condition. Canadian Journal of Chemical Engineering, 2007,85(3): 257-267
    9 Terasaka K, Tsuge H. Bubble formation under constant-flow conditions. Chemical Engineering Science, 1993, 48(19): 3417-3422  
    10 Gerlach D, Alleborn N, Buwa V, et al. Numerical simulation of periodic bubble formation at a submerged orifice with constant gas flow rate. Chemical Engineering Science, 2007, 62(7): 2109-2125  
    11 Loubière K, Hébrard G. Bubble formation from a flexible hole submerged in an inviscid liquid. Chemical Engineering Science, 2003,58(1): 135-148  
    12 Duhar G, Colin C. Dynamics of bubble growth and detachment in a viscous shear flow. Physics of Fluids, 2006, 18(7): 3453-3475
    13 Oguz HN, Prosperetti A. Surface-tension e ects in the contact of liquid surfaces. Journal of Fluid Mechanics, 1989, 203: 149-171  
    14 Buwa VV, Gerlach D, Durst F, et al. Numerical simulations of bubble formation on submerged orifices: Period-1 and period-2 bubbling regimes. Chemical Engineering Science, 2007, 62(24): 7119-7132  
    15 Byakova AV, Gnyloskurenko SV, Nakamura T, et al. Influence of wetting conditions on bubble formation at orifice in an inviscid liquid - mechanism of bubble evolution. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2003, 229(1): 19-32
    16 Liow JL, Gray NB. A model of bubble growth in wetting and non-wetting liquids. Chemical Engineering Science, 1988, 43(12):3129-3139  
    17 Marco PD, Grassi W, Memoli G, et al. Influence of electric field on single gas-bubble growth and detachment in microgravity. International Journal of Multiphase Flow, 2003, 29(3): 559-578
    18 Chakraborty I, Ray B, Biswas G, et al. Computational investigation on bubble detachment from submerged orifice in quiescent liquid under normal and reduced gravity. Physics of Fluids, 2009, 21(6):1337-1372
    19 Kumar R, Kullor NR. The formation of bubbles and drops. Adcance in Chemical Engineering, 1970, 8(1): 255-368
    20 Wraith AE. Two stage bubble growth at a submerged plate orifice. Chemical Engineering Science, 1971, 26(10): 1659-1671  
    21 Kulkarni AA, Joshi JB. Bubble formation and bubble rise velocity in gas-?liquid systems: A review. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931  
    22 Gaddis ES, Vogelpohl A. Bubble formation in quiescent liquids under constant flow conditions. Chemical Engineering Science, 1986,41(1): 97-105  
    23 Tsuge H, Hibino S. Bubble formation from an orifice submerged in liquids. Chemical Engineering Communications, 1983, 22(1):63-79
    24 Longuet-Higgins MS, Kerman BR, Lunde K. The release of air bubbles from an underwater nozzle. Journal of Fluid Mechanics, 1991,230: 365-390  
    25 Oguz HN, Prosperetti A. Dynamics of bubble growth and detachment from a needle. Journal of Fluid Mechanics, 1993, 257: 111-145  
    26 Gerlach D, Biswas G, Durst F, et al. Quasi-static bubble formation on submerged orifices. International Journal of Heat & Mass Transfer,2005, 48(2): 425-438  
    27 Bari SD, Robinson AJ. Experimental study of gas injected bubble growth from submerged orifices. Experimental Thermal & Fluidence,2013, 44(1): 124-137
    28 Chuang SC, Goldschmidt VW. Bubble formation due to a submerged capillary tube in quiescent and coflowing streams. American Society of Mechanical Engineers, 1970, 92(4): 705-711
    29 Deshpande DA, Deo MD, Hanson FV, et al. A model for the prediction of bubble size at a single orifice in two-phase gas—liquid systems. Chemical Engineering Science, 1992, 47(7): 1669-1676  
    30 Jamialahmadi M, Zehtaban MR, Müller-Steinhagen H, et al. Study of bubble formation under constant flow conditions. Chemical Engineering Research & Design, 2001, 79(5): 523-532  
    31 Zhang L, Shoji M. Aperiodic bubble formation from a submerged orifice. Chemical Engineering Science, 2001, 56(1): 5371-5381
    32 Weiland CJ, Vlachos PP, Yagla JJ. Concept analysis and laboratory observations on a water piercing missile launcher. Ocean Engineering , 2010, 37(11): 959-965
    33 Ross CTF. A conceptual design of an underwater missile launcher. Ocean Engineering, 2005, 32(1): 85-99  
  • 加载中
计量
  • 文章访问数:  779
  • HTML全文浏览量:  47
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-20
  • 修回日期:  2015-11-03
  • 刊出日期:  2016-01-18

目录

    /

    返回文章
    返回