EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流稳定性

胡宇鹏 李友荣

胡宇鹏, 李友荣. 长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流稳定性[J]. 力学学报, 2015, 47(5): 722-730. doi: 10.6052/0459-1879-15-171
引用本文: 胡宇鹏, 李友荣. 长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流稳定性[J]. 力学学报, 2015, 47(5): 722-730. doi: 10.6052/0459-1879-15-171
Hu Yupeng, Li Yourongy. NUMERICAL INVESTIGATION ON FLOW STABILITY OF RAYLEIGH-B?NARD CONVECTION OF COLD WATER IN A RECTANGULAR CAVITY COOLED AND HEATED SYMMETRICALLY RELATIVE TO THE TEMPERATURE OF DENSITY MAXIMUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 722-730. doi: 10.6052/0459-1879-15-171
Citation: Hu Yupeng, Li Yourongy. NUMERICAL INVESTIGATION ON FLOW STABILITY OF RAYLEIGH-B?NARD CONVECTION OF COLD WATER IN A RECTANGULAR CAVITY COOLED AND HEATED SYMMETRICALLY RELATIVE TO THE TEMPERATURE OF DENSITY MAXIMUM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 722-730. doi: 10.6052/0459-1879-15-171

长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流稳定性

doi: 10.6052/0459-1879-15-171
基金项目: 国家自然科学基金(51376199)和中国工程物理研究院总体工程研究所创新与发展基金(14cxj20)资助项目.
详细信息
    通讯作者:

    胡宇鹏,工程师,主要研究方向:流动稳定性,传热传质.E-mail:yupengbao@163.com

  • 中图分类号: TK124

NUMERICAL INVESTIGATION ON FLOW STABILITY OF RAYLEIGH-B?NARD CONVECTION OF COLD WATER IN A RECTANGULAR CAVITY COOLED AND HEATED SYMMETRICALLY RELATIVE TO THE TEMPERATURE OF DENSITY MAXIMUM

Funds: The project was supported by the National Natural Science Foundation of China (51376199) and the Innovation and Developing Foundation of ISE.CAEP (14cxj20).
  • 摘要: 为了解具有密度极值流体瑞利-贝纳德对流特有现象和规律,利用有限容积法对长方体腔内关于密度极值温度对称加热-冷却时冷水瑞利-贝纳德对流的分岔特性进行了三维数值模拟,得到了不同条件下的对流结构型态及其分岔序列,分析了密度极值特性、瑞利数、热边界条件以及宽深比对瑞利-贝纳德对流的影响. 结果表明:具有密度极值冷水瑞利-贝纳德对流系统较常规流体更加稳定,且流动型态及其分岔序列更加复杂;相同瑞利数下多种流型可以稳定共存,各流型在相互转变中存在滞后现象;随着宽深比的增加,流动更易失稳,对流传热能力增强;系统在导热侧壁时比绝热侧壁更加稳定,对流传热能力有所减弱;基于计算结果,采用线性回归方法,得到了热壁传热关联式.

     

  • Cross MC, Hohenberg PC. Pattern formation outside of equilibrium. Reviews of Modern Physics, 1993, 65: 851-1086  
    Padilla ELM, Lourenço MAS, Silveira-Neto A. Natural convection inside cubical cavities: numerical solutions with two boundary conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35(3): 275-283  
    王小华, 朱文芳. 长方腔自然对流第一次分岔突变现象的数值分析. 力学学报, 2010, 43(3): 389-399 (Wang Xiaohua, Zhu Wenfang. Numerical research on the sudden change characteristic of the first bifurcation for natural convection of air enclosed in 2D rectangular cavity. Chinese Journal of Theoretical and Applied Mechanics, 2010, 43(3): 389-399 (in Chinese))
    孔祥言, 吴建兵. 多孔介质中的非达西自然对流的分岔研究. 力学学报, 2002, 34 (2): 177-185 (Kong Xiangyan, Wu Jianbing. A bifurcation study of non-Darcy free convection in porous media. Acta Mechanica Sinica, 2002, 34 (2): 177-185 (in Chinese))
    Jeffreys H. Some cases of instability in fluid motion. Proceedings of the Royal Society of London Series A-Containing Papers of A Mathematical and Physical Character, 1928, 118(779): 195-208
    Zhan NY, Xu PW, Sun SM, et al. Studu on the stability and 3-dimensional character for natural convection in a rectangular cavity heated from below. Science China Technological Sciences, 2010, 53(6): 1647-1654  
    Zhan NY, Gao Q, Bai L, et al. Experimental research on nonlinear characteristics of natural convection in a 3-D shallow cavity. Science China Technological Sciences, 2011, 54(12): 3304-3310  
    Mukutmoni D, Yang KT. Thermal convection in small enclosures: an atypical bifurcation sequence. International Journal of Heat and Mass Transfer, 1995, 38(1): 113-126  
    Gollub JP, Benson SV. Many routes to turbulent convection. Journal of Fluid Mechanics, 1980, 100(10): 449-470
    Bousset F, Lyubimov DV, Sedel'Nikov GA. Three-dimensional convection regimes in a cubical cavity. Fluid Dynamics, 2008, 43(1): 1-8  
    Puigjaner D, Herrero J, Simó C, et al. Bifurcation analysis of steady Rayleigh-Bénard convection in a cubical cavity with conducting sidewalls. Journal of Fluid Mechanics, 2008, 598: 393-427
    卞恩杰, 杨茉, 李凌等. 格子Boltzmann方法对Rayleigh-Bénard流的模拟与非线性分析. 工程热物理学报, 2012, 33(4): 685-688 (Bian Enjie, Yang Mo, Li Ling, et al. Simulation and nonlinear analysis for the Rayleigh-Bénard convection with the lattice Boltzmann method. Journal of Engineering Thermophysics, 2012, 33(4): 685-688 (in Chinese))
    Leong SS. Numerical study of Rayleigh-Bénard convection in a cylinder. Numerical Heat Transfer Part A-Applications, 2002, 41: 673-683  
    Venturi D, Wan X, Karniadakis GE. Stochastic bifurcation analysis of Rayleigh-Bénard convection. Journal of Fluid Mechanics, 2010, 650(1): 391-413
    Hof B, Lucas P, Mullin T. Flow state multiplicity in convection. Physics of Fluids, 1999, 11(10): 2815-2817  
    Borońska K, Tuckerman LS. Extreme multiplicity in cylindrical Rayleigh-Bénard convection. I. Time dependence and oscillations. Physical Review E, 2010, 81: 036320  
    Borońska K, Tuckerman LS. Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification. Physical Review E, 2010, 81: 036321  
    宁利中, 齐昕, 余荔等. 混合流体Rayleigh-Bénard对流的多重稳定性现象. 应用基础与工程科学学报, 2010, 18(2): 281-290 (Ning Lizhong, Qi Xing, Yu Li, et al. Multistability of Rayleigh-Bénard convection in a binary fluid mixture. Journal of Basic Science and Engineering, 2010, 18(2): 281-290 (in Chinese))
    苏燕兵, 陆军, 白博峰. 封闭腔内水自然对流换热数值模拟. 化工学报, 2007, 58(11): 2715-2720 (Su Yanbing, Lu Jun, Bai Bofeng. Numerical simulation of natural convection and heat transfer of water in cavities. Journal of Chemical Industry and Engineering (China), 2007, 58(11): 2715-2720 (in Chinese))
    Sivasankaran S, Ho CJ. Effect of temperature dependent properties on natural convection of water near its density maximum in enclosures. Numerical Heat Transfer Part A-Applications, 2008, 53: 507-523
    Kashani S, Ranjbar AA, Mastiani M, et al. Entropy generation and natural convection of nanoparticle-water mixture (nanofluid) near water density inversion in an enclosure with various patterns of vertical wavy walls. Applied Mathematics and Computation, 2014, 226: 180-193  
    Braga SL, Viskanta R. Effect of density extremum on the solidification of water on a vertical wall of a rectangular cavity. Experimental Thermal and Fluid Science, 1992, 5(6): 703-713  
    Kandaswarmy P, Sivasankaran S, Nithyadevi N. Buoyancy-driven convection of water near its density maximum with partially active vertical walls. International Journal of Heat and Mass Transfer, 2007, 50: 942-948  
    Nithyadevi N, Sivasankaran S, Kandaswamry P. Buoyancy-driven convection of water near its density maximum with time periodic partially active vertical walls. Meccanica, 2007, 42: 503-510  
    Hu YP, Li YR, Yuan XF, et al. Natural convection of cold water near its density maximum in an elliptical enclosure containing a coaxial cylinder. International Journal of Heat and Mass Transfer, 2013, 60: 170-179
    Hu YP, Li YR, Wu CM. Comparison investigation on natural convection of cold water near its density maximum in annular enclosures with complex configurations. International Journal of Heat and Mass Transfer, 2014, 72: 572-584  
    Li YR, Ouyang YQ, Hu YP. Pattern formation of Rayleigh-Bénard convection of cold water near its density maximum in a vertical cylindrical container. Physical Review E, 2012, 86: 046323  
    Gebhart B, Mollendorf JC. A new density relation for pure and saline water. Deep-Sea Research, 1977, 24: 831-848   
  • 加载中
计量
  • 文章访问数:  1067
  • HTML全文浏览量:  57
  • PDF下载量:  752
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12
  • 修回日期:  2015-07-14
  • 刊出日期:  2015-09-18

目录

    /

    返回文章
    返回