EI、Scopus 收录
中文核心期刊

豚鼠内耳前庭-半规管生物力学模型研究

苏英锋, 孙秀珍, 刘迎曦, 辛晓燕, 沈双, 闫志勇, 于申

苏英锋, 孙秀珍, 刘迎曦, 辛晓燕, 沈双, 闫志勇, 于申. 豚鼠内耳前庭-半规管生物力学模型研究[J]. 力学学报, 2015, 47(6): 1065-1072. DOI: 10.6052/0459-1879-15-140
引用本文: 苏英锋, 孙秀珍, 刘迎曦, 辛晓燕, 沈双, 闫志勇, 于申. 豚鼠内耳前庭-半规管生物力学模型研究[J]. 力学学报, 2015, 47(6): 1065-1072. DOI: 10.6052/0459-1879-15-140
Su Yingfeng, Sun Xiuzhen, Liu Yingxi, Xin Xiaoyan, Shen Shuang, Yan Zhiyong, Yu Shen. BIOMECHANICAL MODEL OF THE VETIBULE AND SEMICIRCULAR CANALS OF GUINEA PIG[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1065-1072. DOI: 10.6052/0459-1879-15-140
Citation: Su Yingfeng, Sun Xiuzhen, Liu Yingxi, Xin Xiaoyan, Shen Shuang, Yan Zhiyong, Yu Shen. BIOMECHANICAL MODEL OF THE VETIBULE AND SEMICIRCULAR CANALS OF GUINEA PIG[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1065-1072. DOI: 10.6052/0459-1879-15-140
苏英锋, 孙秀珍, 刘迎曦, 辛晓燕, 沈双, 闫志勇, 于申. 豚鼠内耳前庭-半规管生物力学模型研究[J]. 力学学报, 2015, 47(6): 1065-1072. CSTR: 32045.14.0459-1879-15-140
引用本文: 苏英锋, 孙秀珍, 刘迎曦, 辛晓燕, 沈双, 闫志勇, 于申. 豚鼠内耳前庭-半规管生物力学模型研究[J]. 力学学报, 2015, 47(6): 1065-1072. CSTR: 32045.14.0459-1879-15-140
Su Yingfeng, Sun Xiuzhen, Liu Yingxi, Xin Xiaoyan, Shen Shuang, Yan Zhiyong, Yu Shen. BIOMECHANICAL MODEL OF THE VETIBULE AND SEMICIRCULAR CANALS OF GUINEA PIG[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1065-1072. CSTR: 32045.14.0459-1879-15-140
Citation: Su Yingfeng, Sun Xiuzhen, Liu Yingxi, Xin Xiaoyan, Shen Shuang, Yan Zhiyong, Yu Shen. BIOMECHANICAL MODEL OF THE VETIBULE AND SEMICIRCULAR CANALS OF GUINEA PIG[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1065-1072. CSTR: 32045.14.0459-1879-15-140

豚鼠内耳前庭-半规管生物力学模型研究

基金项目: 国家自然科学基金(11472047)和辽宁省教育厅基金(L2012323)资助项目.
详细信息
    通讯作者:

    苏英锋,副教授,主要研究方向:耳鼻咽喉器官生物力学.E-mail:suyingfeng2616@163.com

  • 中图分类号: O351.2

BIOMECHANICAL MODEL OF THE VETIBULE AND SEMICIRCULAR CANALS OF GUINEA PIG

Funds: The project was supported by the National Natural Science Foundation of China (11472047) and the Foundation of Education Department of Liaoning Province (L2012323).
  • 摘要: 人体维持平衡主要依靠前庭、视觉及本体感觉3个系统的相互协调来完成,其中前庭系统最为重要.因其结构细微且位置深在,传统方法难以满足现代前庭医学定位、定性、定量的研究需要,而生物数值模拟研究方法在现代耳科学研究中优势显著.建立精准的生物数值模型是其重点之一.本研究通过连续组织切片技术获取豚鼠内耳膜性结构的二维解剖数据,进一步建立同时包括前庭和3个半规管的宏观三维生物数值模型,其空间结构特征及尺寸与解剖学观察一致;数值模拟临床医学冷热实验,量化描述了不同环境温度激励下半规管内壶腹嵴顶位移、速度和压强等参数随时间变化的生物力学特征,其与临床观察到的眼震结果一致.总之,通过连续组织切片技术获取内耳膜性结构二维解剖数据并据此建立内耳三维生物数值模型的研究方法可行,所建立的生物模型可满足前庭-半规管平衡功能定位、定性、定量的研究需要.
    Abstract: The vestibular system, the most important organ to maintain the human body balance, involves three systems, including the vestibular, visual and proprioception. Because of its fine structure and deep location of the vestibule and the three semicircular canals, the traditional method was di cult to meet the positioning, qualitative and quantitative research of modern vestibular medicine, while biological numerical simulation has the advantages in modern otology, in which it is important to establish an accurate biological numerical model. Based on two-dimensional anatomical data of guinea pig inner ear by serial tissue sections, three-dimensional biological numerical model of the vestibular system containing the vestibule and the three semicircular canals was established and the spatial structure and size of the model was consistent with the anatomic observation. Furthermore, numerical simulation of the caloric test was carried out on the model and biomechanical characteristics of top of semicircular canal crest were described quantitatively with the parameters including displacement, velocity and pressure under the di erent environment temperature excitation and the results were in agreement with the clinical observation. In short, it was feasible to reconstruct a biological numerical model of the vestibular system based on the two-dimensional anatomical data by continuous tissue slicing technique and the biological model meets the needs of positioning, qualitative and quantitative research of the vestibular and semicircular canals balance function.
  • 姚文娟, 陈懿强, 叶志明 等. 耳听力系统生物力学研究进展. 力学与实践, 2013, 35(6): 1-10 (Yao Wenjuan, Chen Yiqiang, Ye Zhiming, et al. Advance in biomechanics of human ear as hearing system. Mechanics in Engineering, 2013, 35(6): 1-10 (in Chinese))
    Fadaei M, Abouali O, Emdad H, et al. Numerical simulation of wave propagation in a realistic model of the human external ear. Computer Methods in Biomechanics & Biomedical Engineering, 2015, 18: 1797-1810
    刘迎曦,李生,孙秀珍.人耳传声数值模型. 力学学报,2008, 40(1):107-113 (Liu Yingxi,Li Sheng,Sun Xiuzhen. Numerical modeling of human ear for sound transmission. Chinese Journal of Theoretical & Applied Mechanics, 2008, 40 (1): 107-113 (in Chinese))
    Kwacz M, Marek P, Borkowski P, et al. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery. Biomechanics & Modeling in Mechanobiology, 2013, 12(6): 1243-1261
    Fei Z, Koike T, Jie W, et al. Finite element analysis of the middle ear transfer functions and related pathologies. Medical Engineering & Physics, 2009, 31(8): 907-916
    Song YL, Lee CF. Computer-aided modeling of sound transmission of the human middle ear and its otological applications using finite element analysis. Tzu Chi Medical Journal, 2012, 24(4): 178-180
    Kassemi M, Deserranno D, Oas JG. Fluid-structural interactions in the inner ear. Computers & Structures, 2005, 83(2): 181-189
    Kassemi M, Oas JG, Deserranno D. Fluid-structural dynamics of ground-based and microgravity caloric tests. Journal of Vestibular Research, 2005, 15(2): 93-107
    Selva P, Morlier J, Gourinat Y. Toward a three-dimensional finite-element model of the human inner ear angular accelerometers sensors. International Journal for Computational Vision and Biomechanics, 2010, 3(2): 149-156
    Wu C, Cheng H, Lin Y, et al. Dynamic analysis of fluid-structure interaction of endolymph and cupula in the lateral semicircular canal of inner ear. Journal of Hydrodynamics, Ser. B, 2011, 23(6): 777-783
    Boselli F, Obrist D, Kleiser L. Vortical flow in the utricle and the ampulla: a computational study on the fluid dynamics of the vestibular system. Biomech Model Mechanobiol, 2013, 12(2): 335-348
    沈双, 孙秀珍, 刘迎曦. 人内耳前庭系统膜迷路流固耦合数值模拟. 力学学报, 2010, 42(3): 415-421 (Shen Shuang,Sun Xiuzhen,Liu Yingxi, et al. Numerical simulation of membranous labyrinth in vestibular system of human inner ear by fluid-structural interaction method. Chinese Journal of Theoretical & Applied Mechanics, 2010, 42(3): 415-421 (in Chinese))
    张天宇, 吴彩琴, 戴培东. 耳生物力学研究现状与展望 (下). 中国眼耳鼻喉科杂志, 2010, 10(2): 72-74 (Zhang Tianyu, Wu Caiqin, Dai Peidong. Update and prospect of hearing mechanics. Chinese Journal of Ophthalmology and Otorhinolaryngology, 2010, 10(2): 72-74 (in Chinese))
    Dai P, Liu Y, Jiang SC, et al. Stereo morphology of temporal bone and ear. Chinese Medical Journal, 2004, 117(5): 733-737
    O'neill G. The caloric stimulus: temperature generation within the temporal bone. Acta Oto-laryngologica, 1987, 103(3-4): 266-272
    O'neill G. The caloric stimulus: mechanisms of heat transfer. British Journal of Audiology, 1995, 29(2): 87-94
    Steer RW Jr, Li YT, Young LR, et al. Physical properties of labyrinthine fluids and quantification of the phenomenon of caloric stimulation, NASA SP-152 (1968), 409-420
    Kondrachuk AV, Sirenko SP, Boyle R. Effect of difference of cupula and endolymph densities on the dynamics of semicircular canal. Journal of Vestibular Research, 2008, 18(2-3): 69-88
    Damiano ER. Continuum models of rotational and caloric stimulation of the vestibular semicircular canal. [PhD Dissertation]. New York: Rensselaer Polytechnic Institute, Troy, 1993
    孙程成, 蒋子栋. 小动物内耳影像学研究进展. 中华耳科学杂志, 2014, 12(3): 512-515 (Sun Chengcheng, Jiang Zidong. Advance in iconography of small animals. Chinese Journal of Otology, 2014, 12(3): 512-515 (in Chinese))
    Moreno LE, Rajguru SM, Matic AI, et al. Infrared neural stimulation: beam path in the guinea pig cochlea. Hearing Research, 2011, 282(1-2): 289-302
    Ichijo H. Does the superior semicircular canal receive caloric stimulation? Am J Otolaryngol, 2012, 33(6): 718-722
    安淑红, 万龙, 徐玉洁. 前庭蜗器的标本制作及相关的解剖学观测. 泰山医学院学报, 2010 (11): 837-840 (An Shuhong, Wan Long, Xu Yujie. Manufacturing of the vestibulocochlear organ Anatomical measurement. Journal of Taishan Medical College, 2010 (11): 837-840 (in Chinese))
    曾令延, 魏文洲, 李茂进 等. 正常人内耳结构的 MR 测量. 医学影像学杂志, 2006, 16(3): 226-229 (Zeng Lingyan,Wei Wenzhou,Li Maojin,et a1. MRI measurement for inner ear structrues of nomal people. Journal of Medical Imaging, 2006, 16(3): 226-229 (in Chinese))
    李书玲, 刘怀军. 正常人内耳前庭, 半规管及耳蜗的 MRI 测量. 中华放射学杂志, 2003, 37(1): 55-58 (Li Shuling, Liu Huaijun. MRI measurement for inner ear structures. Chinese Journal of Radiology, 2003, 37(1): 55-58 (in Chinese))
    Curthoys IS, Oman CM. Dimensions of the horizontal semicircular duct, ampulla and utricle in rat and guinea pig. Acta Oto-laryngologica, 1986, 101(1-2): 1-10
    Ifediba MA, Rajguru SM, Hullar TE, et al. The role of 3-canal biomechanics in angular motion transduction by the human vestibular labyrinth. Annals of Biomedical Engineering, 2007, 35(7): 1247-1263
    张波, 孙敬武. 良性阵发性位置性眩晕患者裸眼及视频眼震图下眼震特征及定位诊断分析. 听力学及言语疾病杂志, 2012, 20(3): 235-237 (Zhang Bo, Sun Jingwu. The observation and diagnosis of 108 patients with benign positional paroxysmal vertigo with naked eyes and VNG. Journal of Audiology and Speech Pathology,2012, 20(3): 235-237 (in Chinese))
    Shen S, Liu Y, Sun X, et al. A biomechanical model of the inner ear: numerical simulation of the caloric test. Scientific World Journal, 2013, 2013(5): 206-232
    Young JH. Analysis of vestibular system responses to thermal gradients induced in the temporal bone. [PhD thesis]. University of Michigan, Ann Arbor
计量
  • 文章访问数:  1098
  • HTML全文浏览量:  94
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-07-29
  • 刊出日期:  2015-11-17

目录

    /

    返回文章
    返回