EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维方腔热对流系统中纳米颗粒混合及凝并特性的数值模拟

徐飞彬 周全 卢志明

徐飞彬, 周全, 卢志明. 二维方腔热对流系统中纳米颗粒混合及凝并特性的数值模拟[J]. 力学学报, 2015, 47(5): 740-750. doi: 10.6052/0459-1879-15-062
引用本文: 徐飞彬, 周全, 卢志明. 二维方腔热对流系统中纳米颗粒混合及凝并特性的数值模拟[J]. 力学学报, 2015, 47(5): 740-750. doi: 10.6052/0459-1879-15-062
Xu Feibin, Zhou Quan, Lu Zhiming. NUMERICAL SIMULATION OF BROWNIAN COAGULATION AND MIXING OF NANOPARTICLES IN 2D RAYLEIGH-B?NARD CONVECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 740-750. doi: 10.6052/0459-1879-15-062
Citation: Xu Feibin, Zhou Quan, Lu Zhiming. NUMERICAL SIMULATION OF BROWNIAN COAGULATION AND MIXING OF NANOPARTICLES IN 2D RAYLEIGH-B?NARD CONVECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 740-750. doi: 10.6052/0459-1879-15-062

二维方腔热对流系统中纳米颗粒混合及凝并特性的数值模拟

doi: 10.6052/0459-1879-15-062
基金项目: 国家自然科学基金资助项目(11272196,11332006).
详细信息
    通讯作者:

    卢志明,教授,主要研究方向:湍流理论,计算流体力学和环境流体力学.E-mail:zmlu@shu.edu.cn

  • 中图分类号: O359+.1

NUMERICAL SIMULATION OF BROWNIAN COAGULATION AND MIXING OF NANOPARTICLES IN 2D RAYLEIGH-B?NARD CONVECTION

Funds: The project was supported by the National Natural Science Foundation of China (11272196, 11332006).
  • 摘要: 采用泰勒展开矩方法对二维瑞利-贝纳德热对流系统(1×106 ≤Ra ≤1 ×108) 中纳米颗粒群的混合和凝并特性进行了数值模拟. 结果显示颗粒群随时间演化经历了扩散阶段、混合阶段、充分混合阶段3 个阶段, 随着颗粒群混合和凝并的进行, 颗粒数目浓度减少, 颗粒群的平均体积增大; 得到了颗粒分布函数各特征量与温度相关系数以及各特征量的空间分布标准偏差在3 个阶段的不同特征; 得到了颗粒分布函数各阶矩以及平均体积长时间演化的渐近行为, 结果与零维渐近解析解一致. 最后, 本文进一步研究了无量纲数(包括瑞利数Ra, 斯密特数ScM, 达姆科勒数Da) 对颗粒群达到自保持分布时间的影响, 发现该时间随着RaScM的增大呈对数率减小, 随着Da的增大呈线性增大

     

  • 赵海波, 郑楚光. 离散系统动力学演变过程的颗粒群平衡模拟. 北京: 科学出版社, 2008, 1-30 (Zhao Haibo, Zheng Chuguang. Population Balance Modeling of Dynamic Evolution in Dispersed System. Beijing: Science Press, 2008, 1-30 (in Chinese))
    Metzger S, Lelieveld J. Reformulating atmospheric aerosol thermodynamics and hygroscopic growth into fog, haze and clouds. Atmospheric Chemistry and Physics, 2007, 7: 3163-3193  
    Hanna V, Ilona R. Thermodynamics and kinetics of atmospheric aerosol particle formation and growth. Chemical Society Reviews, 2012, 41: 5160-5173  
    Gao Y, Zhang M, Liu Z, et al. Modeling the feedback between aerosol and meteorological variables in the atmospheric boundary layer during a severe fog-haze event over the North China Plain. Atmospheric Chemistry and Physics, 2015, 15: 1093-1130
    方传波, 夏智勋, 胡建新等. 强迫对流下硼颗粒燃烧特性影响因素研究. 航空学报, 2014, 35: 1-9 (Fang Chuanbo, Xia Zhixun, Hu Jianxin, et al. Influence factors of combustion characteristics of boron particle in forced convective flow. Acta Aeronautica et Astronautica Sinica, 2014, 35: 1-9 (in Chinese))
    Golman B, Julklang W. Simulation of exhaust gas heat recovery from a spray dryer. Applied Thermal Engineering, 2014, 73(1): 899-913  
    Shi D, El-Farra NH, Li MH, et al. Predictive control of particle size distribution in particulate processes. Chemical Engineering Science, 2006, 61(1): 261-281
    Lee KW. Change of particle size distribution during Brownian coagulation. Journal of Colloid and Interface Science, 1983, 92(2): 315-325  
    Gelbard F, Tambour Y, Seinfeld JH. Simulation of multicomponent aerosol dynamics. Journal of Colloid and Interface Science, 1980, 76(2): 541-556  
    Tandon P, Rosner DE. Monte Carlo simulation of particle aggregation and simultaneous restructuring. Journal of Colloid and Interface Science, 1999, 213(2): 273-286  
    McGraw R. Description of aerosol dynamic by the quadrature method of moments. Aerosol Science and Technology, 1997, 27(2): 255-265  
    于明州, 江影, 张凯. 湍动剪切微米尺度粒子凝并TEMOM模型研究. 力学学报, 2011, 43(3): 447-452 (Yu Mingzhou, Jiang Ying, Zhang Kai. The study on micro-scale particle coagulation due to turbulent shear mechanism using TEMOM model. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 447-452 (in Chinese))
    Yu MZ, Lin JZ, Chan TL. A new moment method for solving the coagulation equation for particles in Brownian motion. Aerosol Science and Technology, 2008, 42(9): 705-713  
    Chen ZL, Lin JZ, Yu MZ. Direct expansion method of moments for nanoparticle Brownian coagulation in the entire size regime. Journal of Aerosol Science, 2014, 67: 28-37  
    Suha SM, Zachariaha MR, Girshicka SL. Numerical modeling of silicon oxide particle formation and transport in a one-dimensional low-pressure chemical vapor deposition reactor. Journal of Aerosol Science, 2002, 33(6): 943-959  
    Settumba N, Garrick SC. Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. Journal of Aerosol Science, 2003, 34(2): 149-167  
    Xie ML, Yu MZ, Wang LP. TEMOM model to simulate nanoparticle growth in the temporal mixing layer due to Brownian coagulation. Journal of Aerosol Science, 2012, 54: 32-48  
  • 加载中
计量
  • 文章访问数:  958
  • HTML全文浏览量:  64
  • PDF下载量:  844
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-26
  • 修回日期:  2015-06-15
  • 刊出日期:  2015-09-18

目录

    /

    返回文章
    返回