EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单个压电振子的湍流边界层主动控制

张浩 郑小波 姜楠

张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制[J]. 力学学报, 2016, 48(3): 536-544. doi: 10.6052/0459-1879-15-020
引用本文: 张浩, 郑小波, 姜楠. 基于单个压电振子的湍流边界层主动控制[J]. 力学学报, 2016, 48(3): 536-544. doi: 10.6052/0459-1879-15-020
Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. doi: 10.6052/0459-1879-15-020
Citation: Zhang Hao, Zheng Xiaobo, Jiang Nan. ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 536-544. doi: 10.6052/0459-1879-15-020

基于单个压电振子的湍流边界层主动控制

doi: 10.6052/0459-1879-15-020
基金项目: 国家自然科学基金(11272233,11332006,11411130150)和国家重点基础研究发展计划(973)课题(2012CB720101,2012CB720103)资助项目.
详细信息
    通讯作者:

    姜楠,教授,主要研究方向:湍流,实验流体力学.E-mail:nanj@tju.edu.cn

  • 中图分类号: O357.5

ACTIVE CONTROL OF TURBULENT BOUNDARY LAYER BASED ON A SINGLE PIEZOELECTRIC OSCILLATOR

  • 摘要: 利用安装在壁面上的单个压电振子周期振荡,采用开环主动控制方案,实现了对平板湍流边界层相干结构猝发的主动控制和壁湍流减阻.根据不同的输入电压幅值和频率,完成了10种工况的实验.在压电振子下游2mm处,用热线风速仪和迷你热线单丝探针,精细测量湍流边界层不同法向位置瞬时流向速度信号的时间序列,分析了在Reø=2183压电振子振动对湍流边界层平均速度剖面、减阻率和相干结构猝发过程的影响.实验结果表明,施加控制的工况使平均速度剖面对数律层上移,产生减阻效果;压电振子振幅越大,减阻率越高,减阻效果越明显;通过对施加控制前后流向瞬时速度的多尺度湍涡结构脉动动能的尺度分析,当压电振子振动频率与壁湍流能量最大尺度的猝发频率相近时,减阻率达到最大,为25%,说明控制壁湍流能量最大尺度相干结构的猝发是实现壁湍流减阻的关键;通过对比相干结构猝发的流向速度分量条件相位平均波形,发现施加控制的工况中相干结构猝发流向速度分量的波形幅值明显降低,且流向速度在扫掠后期高速阶段迅速衰减,缩短了高速流体的下扫过程,说明压电振子的振动能抑制相干结构的高速流体下扫过程,减弱高速流体与壁面的强烈剪切过程,并使近壁区域相干结构的振幅显著减弱,迁移速度加快,从而减小壁面摩擦阻力.

     

  • 1 Robinson SK. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 1991, 23: 601-639  
    2 许春晓. 壁湍流相干结构和减阻控制机理. 力学进展, 2015, 45:111-139 (Xu Chunxiao. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 2015, 45:111-139 (in Chinese))
    3 Zhang ZS, Cui GX, Xu CX. Modern turbulence and new challenges. Acta Mechanica Sinica, 2002, 18(4): 309-327  
    4 Kravchenko AG, Choi H, Moin P. On the generation of near-wall streamwise vorticesto wall skin friction in turbulent boundary layers. Phys Fluids, 1993, A5: 3307-3309  
    5葛铭纬, 许春晓, 黄伟希等. 基于壁面主动变形的湍流减阻控制研究. 力学学报, 2012, 44 (4): 653-663 (Ge Mingwei, Xu Chunxiao, Huang Weixi, et al. Drag reduction control based on active wall deformation. Chinese Journal of Theoretical and Applied Mechanics,2012, 44 (4): 653-663 (in Chinese))
    6 Deng BQ, Xu CX. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. J Fluid Mech,2012, 710: 234-259  
    7 黄伟希, 许春晓, 崔桂香等. 壁面展向周期振动的槽道湍流减阻机理的研究. 力学学报, 2004, 36(1): 24-30 (HuangWeixi, Xu Chunxiao, Cui Guixiang, et al. Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Acta Mechanica Sinica,2004, 36(1): 24-30 (in Chinese))
    8 杨歌, 许春晓, 崔桂香. 槽道湍流减阻次优控制方案研究. 力学学报, 2010, 42(5): 818-829 (Yang Ge, Xu Chunxiao, Cui Guixiang. Study on suboptimal control schemes for skin-friction reduction in turbulent channel flow. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 818-829 (in Chinese))
    9 罗世东, 许春晓, 崔桂香. 圆管湍流减阻电磁力控制的直接数值模拟. 力学学报, 2007, 39(3): 311-319 (Luo Shidong, Xu Chunxiao, Cui Guixiang. Direct Numerical simulation of turbulent pipe flow controlled by MHD for drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(3): 311-319 (in Chinese))
    10 Kral LD. Active flow control technology. ASME Fluids Engineering Division Newsletter, 1999: 1-3
    11 Kim J. Control of turbulent boundary layers. Phys Fluids, 2003,15(15): 1093-1105
    12 Karniadakis GE, Choi KS. Mechanisms on transverse motions in turbulent wall flows. Annual Review of Fluid Mechanics, 2003,35(1): 45-62  
    13 Gad-El-Hak M. Flow Control: Passive, Active, and Reactive Flow Management. Cambridge: Cambridge University Press, 2000
    14 Kasagi N, Suzuki Y, Fukagata K. Microelectromechanical systems- based feedback control of turbulence for skin friction reduction. Annual Review of Fluid Mechanics, 2009, 41(41): 231-251
    15 Jung WJ, Mangiavachi N, Akhavan R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids, 1992, 4 (8): 1605-1607  
    16 Choi KS, Debisschop JR, Clayton BR. Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J , 1998, 36(7):1157-1163  
    17 Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech, 1994, 262: 75-110  
    18 Berger TW, Kim J, Lee C, et al. Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids, 2000, 12(3): 631-649  
    19 Park SH, Lee I, Sung HJ. E ect of local forcing on a turbulent boundary layer. Exp in Fluids, 2001, 31: 384-393  
    20 Du Y, Karniadakis GE. Suppressing wall turbulence by means of a transverse traveling wave. Science, 2000, 288(5469): 1230-1234  
    21 Du Y, Symeonidis V, Karniadakis GE. Drag reduction in wallbounded turbulence via a transverse travelling wave. J Fluid Mech,2002, 457(5):1-34
    22 Grosjean C, Lee GB, Hong W, et al. Micro balloon actuators for aerodynamic control. In: Proceedings of the 11th MEMS Workshop, Heidelberg, 25-29 January, 1998: 166-171
    23 Segawa T, Kawaguchi Y, Kikushima Y, et al. Active control of streak structures in wall turbulence using an actuator array producing inclined wavy disturbances. Journal of Turbulence, 2002, 3(1): 1-15
    24 Itoh M, Tamano S, Yokota K, et al. Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. Journal of Turbulence, 2006, 7(27): 1-17
    25 Rathnasingham R. System identification and active control of a turbulent boundary layer. [PhD Thesis]. Boston: Massachusetts Institute of Technology, 1997: 64-69
    26 Cattafesta LN, Garg S, Shukla D. Development of piezoelectric actuators for active flow control. American Institute of Aeronautics and Astronautics, 2001, (8): 1562-1568
    27 Cattafesta LN, Sheplak M. Actuators for active flow control. Annual Review of Fluid Mechanics, 2011, 43(5): 247-272
    28 Bandyopadhyay PR. Review: mean flow in turbulent boundary layers disturbed to alter skin friction. Journal of Fluids Engineering,1986, 108(2): 127-140  
    29 姜楠, 王振东, 舒玮. 子波分析辨识壁湍流猝发事件的能量最大准则. 力学学报, 1997, 29 (4): 406-411 (Jiang Nan, Wang Zhendong, Shu Wei. Maximum energy criterion for identifying burst events in wall turbulence using wavelet analysis. Acta Mechanica Sinica,1997, 29 (4): 406-411 (in Chinese))
    30 舒玮, 姜楠. 湍流中涡的尺度分析, 空气动力学报, 2000, 18(增):89-95 (Shu Wei, Jiang Nan. Eddy scale analysis in turbulence. Acta Aerodynamica Sinica, 2000, 18(S): 89-95 (in Chinese))
    31 Jiang N, Zhang J. Detecting multi-scale coherent eddy structures and intermittency in turbulent boundary layer by wavelet analysis. Chinese Physics Letter, 2005, 22(8): 1968-1971  
    32 Jiang N, LiuW, Liu JH, et al. Phase-averaged waveform of Reynolds stress in wall turbulence during the burst events of coherent structures. Science in China, 2008, 51(7): 857-866  
  • 加载中
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  62
  • PDF下载量:  688
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-14
  • 修回日期:  2016-02-24
  • 刊出日期:  2016-05-18

目录

    /

    返回文章
    返回