EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析

付云伟 张龙 倪新华 刘协权 于金凤 陈诚

付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162. doi: 10.6052/0459-1879-14-399
引用本文: 付云伟, 张龙, 倪新华, 刘协权, 于金凤, 陈诚. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析[J]. 力学学报, 2016, 48(1): 154-162. doi: 10.6052/0459-1879-14-399
Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. doi: 10.6052/0459-1879-14-399
Citation: Fu Yunwei, Zhang Long, Ni Xinhuay, Liu Xiequan, Yu Jinfeng, Chen Cheng. INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162. doi: 10.6052/0459-1879-14-399

考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析

doi: 10.6052/0459-1879-14-399
基金项目: 国家自然科学基金资助项目(11272355).
详细信息
    通讯作者:

    付云伟,博士研究生,研究方向:复合材料损伤与断裂.E-mail:fywoec@163.com

  • 中图分类号: O346

INTERFACE CRACKING ANALYSIS WITH INCLUSIONS INTERACTION IN COMPOSITE CERAMIC

  • 摘要: 复合材料中夹杂含量较高时,夹杂间的相互作用能显著改变材料细观应力应变场分布,基体和夹杂中的平均应力应变水平也会发生较大变化,导致复合材料强度等力学性能发生显著变化. 为修正单一夹杂模型运用在实际材料中的误差,基于相互作用直推估计法,建立一种考虑含夹杂相互作用的夹杂界面裂纹开裂模型. 首先根据相互作用直推估计法,得到残余应力和外载应力共同作用下夹杂中的平均应力,再计算无限大基体中相同的夹杂达到相同应力场时的等效加载应力,将此加载应力作为含界面裂纹夹杂的等效应力边界条件,在此边界条件下求得界面裂纹尖端的应力强度因子,进而得到界面裂纹开裂的极限加载条件,并分析了夹杂弹性性能、含量、热残余应力、夹杂尺寸等因素对界面裂纹开裂条件的影响. 结果表明,方法能够有效修正单夹杂模型运用在实际材料中的误差,较大的残余应力对界面裂纹开裂有重要的影响,夹杂刚度的影响并非单调且比较复杂;在残余应力较小时,降低柔性夹杂刚度或者增大刚性夹杂刚度都有利于提高材料强度;扩大夹杂尺寸将导致裂纹开裂极限应力显著降低,从而降低材料强度.

     

  • 1 Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc Royal Soc, 1957, A241: 376-396  
    2 Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids, 1965, 13: 213-222  
    3 Budiansky B. On the elastic modules of some heterogeneous materials. J Mech Phys Solids, 1965, 13: 223-227  
    4 Mori T, Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusion. Act Metal, 1973, 21: 571-574  
    5 Zheng QS, Du DX. An explicit and universally applicable estimate for the e ective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids, 2001, 49(11): 2765-2788  
    6 Du DX, Zheng QS. A further exploitation on the e ective selfconsistent scheme and IDD estimate for the e ective properties of multiphase composites which accounts for inclusion distribution. Acta Mech, 2001, 157(1-4): 61
    7 Kang H, Milton GW. Solutions to the Pólya-Szegö conjecture and the weak Eshelby conjecture. Archive for Rational Mechanics and Analysis, 2008, 188(1): 93-116  
    8 Liu LP. Solutions to the Eshelby conjectures. Proceedings of the Royal Society of London A, 2008, 464: 573-594  
    9 Zou WN, He QC, Huang MJ, et al. Eshelby's problem of nonelliptical inclusions. Journal of the Mechanics and Physics of Solids,2010, 58: 346-372  
    10 Huang MJ, Wu P, Guan GY, et al. Explicit expressions of the Eshelby tensor for an arbitrary 3D weakly non-spherical inclusion. Acta Mech, 2011, 217: 17-38  
    11 Xu BX,Wang MZ. Special properties of Eshelby tensor for a regular polygonal inclusion. Acta Mech Sinica, 2005, 21: 267-271
    12 Shodja HM. Shokrolahi-Zadeh B. Ellipsoidal domains: piecewise nonuniform and impotent eigenstrain fields. J Elasticity, 2007, 86:1-18
    13 Jasiuk I, Tsuchida E, Mura T. The sliding inclusion under shear. Int J Solids Struct, 1987, 23(10): 1373-1385  
    14 Mura T, Jasiuk I, Tsuchida B. The stress field of a sliding inclusion. Int J Solids Struct, 1985, 21(12): 1165-1179  
    15 Xu BX, Mueller R, Wang MZ. The Eshelby property of sliding inclusions. Arch Appl Mech, 2011, 81: 19-35  
    16 Bonfoh N, Hounkpati V, Sabar H. New micromechanical approach of the coated inclusion problem: Exact solution and applications. Computational Materials Science, 2012, 62: 175-183  
    17 Duan HL, Wang J, Huang ZP, et al. Eshelby formalism for nanoinhomogeneities. Mathematical, Physical and Engineering Sciences,2005, 461(2062): 3335-3353  
    18 Prasad PBN, Simha KRY. Interface crack around circular inclusion: SIF, kinking, debonding energetics. Engineering Fracture Mechanics,2003, 70: 285-307  
    19 Toya M. A crack along the interface of a circular inclusion embedded in an infinite solid. J Mech Phys Solids, 1974, 22: 325-348  
    20 Chao R, Laws N. Closure of an arc crack in an isotropic homogeneous material due to uniaxial loading. Q Jl Mech Appl Math, 1992,45: 629-640  
    21 Chen YZ, Chen RS. Interaction between curved crack and elastic inclusion in an infinite plate. Archive of Applied Mechanics, 1997, 67:566-575  
    22 Chen JK,Wang GT, Yu ZZ, et al. Critical particle size for interfacial debonding in polymer/nanoparticle composites. Composites Science and Technology, 2010, 70: 861-872  
    23 Moorthy S, Ghosh S. A Voronoi cell finite element model for particle cracking in elastic-plastic composite materials. Comput Methods Appl Mech Engrg, 1998, 151: 377-400  
    24 Caballero A, López CM, Carol I. 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput. Methods Appl Mech Engrg, 2006, (195): 7182-7195  
    25 Wang D, Zhao J, Zhou Yonghui, et al. Extended finite element modeling of crack propagation in ceramic tool materials by considering the microstructural features. Computational Materials Science,2013, 77: 236-244  
    26 England AH. An arc crack around a circular elastic inclusion. J Appl Mech, 1966, 32: 637-640
    27 郭荣鑫, Lormand G, 李俊昌. 夹杂物问题应力场的数值计算. 昆 明理工大学学报(理工版), 2004, 29(3): 51-55 (Guo Rongxin, Lormand G, Li Junchang. Numerical calculation of the stress field for the inclusion problem. Journal of Kunming University of Science and Technology(Science and Technology), 2004, 29(3): 51-55 (in Chinese))
    28 Shodja HM, Rad IZ, Soheilifard R. Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method. Journal of the Mechanics and Physics of Solids, 2003, 51: 945-960  
    29 Li ZH, Yang LH. The application of the Eshelby equivalent inclusion method for unifying modulus and transformation toughening. International Journal of Solids and Structures, 2002, 39: 5225-5240  
    30 Othmani Y, Delannay L, Doghri I. Equivalent inclusion solution adapted to particle debonding with a non-linear cohesive law. International Journal of Solids and Structures, 2011, 48: 3326-3335  
    31 Lee HK, Pyo SH. Multi-level modeling of e ective elastic behavior and progressive weakened interface in particulate composites. Composites Science and Technology, 2008, 68: 387-397  
    32 Hong T. Sti ness properties of particulate composites containing debonded particles. International Journal of Solids and Structures,2010, 47: 2191-2200  
    33 Mura T. Micromechanics of Defects in Solids. 2nd edn. Martinus Nijho Publishers, 1987
  • 加载中
计量
  • 文章访问数:  725
  • HTML全文浏览量:  60
  • PDF下载量:  750
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-10
  • 修回日期:  2015-10-21
  • 刊出日期:  2016-01-18

目录

    /

    返回文章
    返回