EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器集群编队最优单脉冲机动

王伟 袁建平 罗建军

王伟, 袁建平, 罗建军. 航天器集群编队最优单脉冲机动[J]. 力学学报, 2015, 47(5): 799-806. doi: 10.6052/0459-1879-14-386
引用本文: 王伟, 袁建平, 罗建军. 航天器集群编队最优单脉冲机动[J]. 力学学报, 2015, 47(5): 799-806. doi: 10.6052/0459-1879-14-386
Wang Wei, Yuan Jianping, Luo Jianjun. OPTIMAL SINGLE IMPULSE MANEUVER FOR SPACECRAFT CLUSTER FLIGHT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 799-806. doi: 10.6052/0459-1879-14-386
Citation: Wang Wei, Yuan Jianping, Luo Jianjun. OPTIMAL SINGLE IMPULSE MANEUVER FOR SPACECRAFT CLUSTER FLIGHT[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 799-806. doi: 10.6052/0459-1879-14-386

航天器集群编队最优单脉冲机动

doi: 10.6052/0459-1879-14-386
基金项目: 国家自然科学基金资助项目(11072194,11472213).
详细信息
    通讯作者:

    王伟,博士研究生,主要研究方向:轨道动力学与控制,航天器相对运动.E-mail:418362467@qq.com

  • 中图分类号: V412.4

OPTIMAL SINGLE IMPULSE MANEUVER FOR SPACECRAFT CLUSTER FLIGHT

Funds: The project was supported by the National Natural Science Foundation of China (11072194,11472213).
  • 摘要: 对航天器集群编队最优单脉冲机动问题进行了研究. 针对不同的任务约束,基于非线性相对运动的周期性条件,以解析的思路分别研究了机动时刻给定和机动时刻未定情况下集群编队的最优单脉冲机动问题. 对于机动时刻给定的情况,从高斯变分方程和基于能量匹配条件的拉格朗日乘子法两个角度分别进行了探讨,将问题转化为对一元二次方程求极值或对一个单零点非线性方程求根;对于机动时刻未定的情况,将问题转化为对一个多零点非线性方程求根,通过傅里叶-贝塞尔级数展开可以得到任意高阶近似解. 对于每种情况,推导得到二范数意义下能量最省对应的最优参考长半轴,以及所施加的最优速度脉冲. 数值仿真验证了本文方法的正确性,并对仿真结果进行了解释和分析.

     

  • Vaddi SS, Vadali SR, Alfriend KT. Formation flying: accommodating nonlinearity and eccentricity perturbations. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 214-223  
    Gurfil P. Relative motion between elliptic orbits: generalized boundedness conditions and optimal formation-keeping. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 761-767  
    Kasdin NJ, Gurfil P, Kolemen E. Canonical modeling of relative spacecraft motion via epicyclic orbital elements. Celestial Mechanics and Dynamical Astronomy, 2005, 92(4): 337-370  
    Schaub H, Alfriend KT. J2 Invariant relative orbits for spacecraft formations. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2): 77-95  
    Xu M, Wang Y, Xu SJ. On the existence of J2 invariant relative orbits from the dynamical system point of view. Celestial Mechanics and Dynamical Astronomy, 2012, 112(4): 427-444  
    Damaren CJ. Almost periodic relative orbits under J2 perturbations. Proceedings of the Institution of Mechanical Engineers. Part G, Journal of Aerospace Engineering, 2007, 221(5): 767-774  
    Guibout VM, Scheeres DJ. Spacecraft formation dynamics and design. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 121-133  
    Sabatini M, Izzo D, Bevilacqua R. Special inclinations allowing minimal drift orbits for formation flying satellites. Journal of Guidance, Control, and Dynamics, 2008, 31(1): 94-100  
    Vadali SR, Sengupta P, Yan Hui, et al. Fundamental frequencies of satellite relative motion and control of formations. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1239-1248  
    Lara M, Gurfil P. Integrable approximation of J2-perturbed relative orbits. Celestial Mechanics and Dynamical Astronomy, 2012, 114(3): 229-254  
    Martinusi V, Gurfil P. Solutions and periodicity of satellite relative motion under even zonal harmonics perturbations. Celestial Mechanics and Dynamical Astronomy, 2011, 111(4): 387-414  
    Vadali SR, Yan Hui, Alfriend KT. Formation maintenance and reconfiguration using impulsive control. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August 2008, Honolulu, Hawaii. AIAA 2008-7359
    Beigelman I, Gurfil P. Optimal fuel-balanced impulsive formation-keeping for perturbed spacecraft orbits. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1266-1283  
    Mazal L, Mingotti G, Gurfil P. Optimal on-off cooperative maneuvers for long-term satellite cluster flight. Journal of Guidance, Control, and Dynamics, 2014, 37(2): 391-402  
    Marshal JA, Broucke ME. Formation of vehicles in cyclic pursuit. IEEE Transactions on Automatic Control, 2004, 49(11): 1963-1974  
    毕鹏,罗建军,张博. 一种基于一致性理论的航天器编队飞行协同控制方法. 宇航学报,2010,31(1):70-74 (Bi Peng, Luo Jianjun, Zhang Bo. Cooperated control algorithm for spacecraft formation flying. Journal of Astronautics, 2010, 31(1): 70-74 (in Chinese))
    马广富,梅杰. 多星系统相对轨道的自适应协同控制. 控制理论与应用,2011,28(6):781-787 (Ma Guangfu, Mei Jie. Adaptive cooperative control for relative orbits of multi-satellite systems. Control Theory and Applications, 2011, 28(6): 781-787 (in Chinese))
    Alfriend KT, Vadali SR, Gurfil P, et al. Spacecraft Formation Flying: Dynamics, Control and Navigation. Oxford: Butterworth-Heinemann Press, 2010. 124-126
    Battin RH. An Introduction to the Mathematics and Methods of Astrodynamics. Broadway, New York: American Institute of Aeronautics and Astronautics, Inc., 1999. 206-212
  • 加载中
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  54
  • PDF下载量:  1152
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-04
  • 修回日期:  2015-07-14
  • 刊出日期:  2015-09-18

目录

    /

    返回文章
    返回