EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于信号分子双向输运的运动细胞极性反转模拟

冯世亮 朱卫平

冯世亮, 朱卫平. 基于信号分子双向输运的运动细胞极性反转模拟[J]. 力学学报, 2015, 47(2): 337-345. doi: 10.6052/0459-1879-14-242
引用本文: 冯世亮, 朱卫平. 基于信号分子双向输运的运动细胞极性反转模拟[J]. 力学学报, 2015, 47(2): 337-345. doi: 10.6052/0459-1879-14-242
Feng Shiliang, Zhu Weiping. SIMULATION FOR REVERSAL OF CELL POLARITY BASED ON BIDIRECTIONAL TRANSPORT OF SIGNALING MOLECULES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 337-345. doi: 10.6052/0459-1879-14-242
Citation: Feng Shiliang, Zhu Weiping. SIMULATION FOR REVERSAL OF CELL POLARITY BASED ON BIDIRECTIONAL TRANSPORT OF SIGNALING MOLECULES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 337-345. doi: 10.6052/0459-1879-14-242

基于信号分子双向输运的运动细胞极性反转模拟

doi: 10.6052/0459-1879-14-242
基金项目: 国家自然科学基金资助项目(31370940).
详细信息
    通讯作者:

    朱卫平,教授,主要研究方向:固体力学,细胞生物力学.E-mail:wpzhu@shu.edu.cn

  • 中图分类号: Q615

SIMULATION FOR REVERSAL OF CELL POLARITY BASED ON BIDIRECTIONAL TRANSPORT OF SIGNALING MOLECULES

Funds: The project was supported by the National Natural Science Foundation of China (31370940).
  • 摘要: 为解释运动细胞极性反转实验所发生的现象, 依据调控细胞极化的信号级联转导关系, 构建了包含一对非稳态二维反应—扩散方程的数学模型, 并采用格子Boltzmann 方法数值求解. 数值实验显示, 当反向信号使胞内Rac 的活化梯度值达到和超过初始正向极化梯度的1.5 倍时, 负责细胞极化的Rac-PIs 反馈回路产生时空调控效应, 可驱动伪足标识信号分子(如磷酸激酶(PI3K) 和磷脂酰肌醇-3, 4, 5- 三磷酸(PIP3)) 和尾部标识信号分子(如磷酸酶(PTEN) 和磷脂酰肌醇-4, 5- 双磷酸(PIP2)) 发生双向输运, 并最终重新积聚于对极. 模拟得到的极性反转时程曲线与已有实验吻合. 此外, 针对实验观测到的新伪足开始形成与原先伪足完全消失之间存在着延滞时间(~30 s), 该文证实这是由于细胞两极对游离态激活酶(例如, PI3K) 展开竞争所致, 无需引入前人所设想的全局性抑制因子的作用.

     

  • Wolf K, te Lindert M, Krause M, et al. Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force. Journal of Cell Biology, 2013, 201(7): 1069-1084  
    Wrighton KH. Wound healing: ESCRTs help repair membranes. Nature Reviews Molecular Cell Biology, 2014, 15(3): 151-151
    Muller WA. How endothelial cells regulate transmigration of leukocytes in the inflammatory response. American Journal of Pathology, 2014, 184(4): 886-896  
    Polacheck WJ, Zervantonakis IK, Kamm RD. Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences, 2013, 70(8): 1335-1356  
    Tojima T, Itofusa R, Kamiguchi H. Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis. Journal of Neuroscience, 2014, 34(21): 7165-7178  
    Jilkine A, Edelstein-Keshet L. A comparison of mathematical models for polarization of single eukaryotic cells in response to guided cues. PLoS Computational Biology, 2011, 7(4): e1001121  
    Dalous J, Burghardt E, Müller-Taubenberger A, et al. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophysical Journal, 2008, 94(3): 1063-1074  
    Chung CY, Funamoto S, Firtel RA. Signaling pathways controlling cell polarity and chemotaxis. Trends in Biochemical Sciences, 2001, 26(9): 557-566  
    Yumura S, Mori H, Fukui Y. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. Journal of Cell Biology, 1984, 99(3): 894-899  
    Gerisch G, Keller HU. Chemotactic reorientation of granulocytes stimulated with micropipettes containing fMet-Leu-Phe. Journal of Cell Science, 1981, 52(1): 1-10
    Iglesias PA, Devreotes PN. Navigating through models of chemotaxis. Current Opinion in Cell Biology, 2008, 20(1): 35-40  
    Simon CM, Vaughan EM, Bement WM, et al. Pattern formation of Rho GTPases in single cell wound healing. Molecular Biology of the Cell, 2013, 24(3): 421-432  
    Meinhardt H. Orientation of chemotactic cells and growth cones: Models and mechanisms. Journal of Cell Science, 1999, 112(17): 2867-2874
    Janetopoulos C, Ma L, Devreotes PN, et al. Chemoattractant-induced phosphatidylinositol 3, 4, 5-trisphosphate accumulation is spatially amplified and adapts, independent of the actin cytoskeleton. Proceedings of the National Academy of Sciences, 2004, 101(24): 8951-8956  
    Levine H, Kessler DA, Rappel WJ. Directional sensing in eukaryotic chemotaxis: A balanced inactivation model. Proceedings of the National Academy of Sciences, 2006, 103(26): 9761-9766  
    Mori Y, Jilkine A, Edelstein-Keshet L. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophysical Journal, 2008, 94(9): 3684-3697  
    Feng S, Zhu W. Bidirectional molecular transport shapes cell polarization in a two-dimensional model of eukaryotic chemotaxis. Journal of Theoretical Biology. 2014, 363(21): 235-246
    Lin B, Holmes WR, Wang CC, et al. Synthetic spatially graded rac activation drives directed cell polarization and locomotion. arXiv preprint arXiv: 1204.5517, 2012
    Weiner OD, Neilsen PO, Prestwich GD, et al. A PtdInsP3-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biology, 2002, 4(7): 509-513  
    Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell, 2007, 129(5): 865-877  
    Infante E, Ridley AJ. Roles of Rho GTPases in leucocyte and leukaemia cell transendothelial migration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368(1629): 20130013  
    Huang YE, Iijima M, Parent CA, et al. Receptor-mediated regulation of PI3Ks confines PI (3, 4, 5) P3 to the leading edge of chemotaxing cells. Molecular Biology of the Cell, 2003, 14(5): 1913-1922  
    Charest PG, Firtel RA. Feedback signaling controls leading-edge formation during chemotaxis. Current Opinion in Genetics & Development, 2006, 16(4): 339-347  
    Goldbeter A. Oscillatory enzyme reactions and Michaelis-Menten kinetics. FEBS Letters, 2013, 587(17): 2778-2784  
    Postma M, Van Haastert PJM. A diffusion-translocation model for gradient sensing by chemotactic cells. Biophysical Journal, 2001, 81(3): 1314-1323  
    Gamba A, de Candia A, Di Talia S, et al. Diffusion-limited phase separation in eukaryotic chemotaxis. Proceedings of the National Academy of Sciences, 2005, 102(47): 16927-16932  
    Ueda M, Shibata T. Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. Biophysical Journal, 2007, 93(1): 11-20
    Ma L, Janetopoulos C, Yang L, et al. Two complementary, local excitation, global inhibition mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3. Biophysical Journal, 2004, 87(6): 3764-3774  
    Marée AFM, Grieneisen VA, Edelstein-Keshet L. How cells integrate complex stimuli: The effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Computational Biology, 2012, 8(3): e1002402  
    Neilson MP, Veltman DM, van Haastert PJM, et al. Chemotaxis: a feedback-based computational model robustly predicts multiple aspects of real cell behaviour. PLoS Biology, 2011, 9(5): e1000618  
  • 加载中
计量
  • 文章访问数:  818
  • HTML全文浏览量:  30
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-18
  • 修回日期:  2014-10-31
  • 刊出日期:  2015-03-18

目录

    /

    返回文章
    返回