AN UNCONDITIONALLY STABLE EXPLICIT ALGORITHMFOR STRUCTURAL DYNAMICS
-
摘要: 利用离散控制理论, 针对结构动力学方程时间积分提出了一种新的无条件稳定的显式算法. 新算法采用CR 算法的速度和位移递推格式, 同时利用Z变换获得算法对应的传递函数, 进而根据极点条件推导了递推格式系数的具体表达式. 然后, 在其系数中引入了一个控制周期延长率的变量s, 从而调节新算法的精度. 理论分析表明无条件稳定显式新算法具有二阶精度、零振幅衰减率、无超调和自起步特性, 且周期延长率可以用变量s控制, 而CR 算法只是本文新算法的特例. 最后, 确定了非线性刚度硬化系统的稳定性界限, 并给出了使新算法精度达到较高的变量s的区间. 算例分析表明, 在此变量区间内取值时, 新算法的精度要优于纽马克常平均加速度算法和CR 算法.Abstract: This paper proposes an unconditionally stable explicit algorithm for time integration of structural dynamics by utilizing the discrete control theory. New algorithm adopts the recursive formula of velocity and displacement of CR algorithm, and obtains the respective transfer function based on Z transformation. Further, the specific expressions of coeffcients of recursive formula are derived according to the pole condition. Then, a variable s in the coeffcients to control the period elongation is introduced, which is applied to adjust the accuracy of new algorithm. Theoretical analysis indicate that the new proposed unconditionally stable explicit algorithm possesses the properties of second accuracy, zero amplitude decay, non-overshoot and self-starting, and its period elongation can be controlled by the variable s. Moreover, the CR algorithm is a special case of the proposed algorithm. Finally, the stability limit of nonlinear stiffening system is determined, and variable interval corresponding to the higher accuracy of new algorithm is presented. Numerical examples demonstrate that in this interval of variable s, the accuracy of new algorithm is superior to that of Newmark constant average acceleration and CR algorithm.
-
张雄, 王天舒. 计算动力学. 北京:清华大学出版社, 2007 (Zhang eXiong, Wang Tianshu. Computational Dynamics. Beijing: Tsinghua University Press, 2007 (in Chinese)) Chopra AK. Dynamics of Structures, 4th edn. Upper Saddle River, New Jersey: Prentice Hall, 2011 刘章军, 陈建兵. 结构动力学. 北京:中国水利水电出版社, 2012 (Liu Zhangjun, Chen Jianbing. Dynamics of Structures. Beijing: China Water Power Press, 2012 (in Chinese)) 张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法. 力学学报, 2014, 46(3): 436-446 (Zhang Weiwei, Jin Xianlong. An arbitrarily mixed explicit-implicit asynchronous integration algorithms based on uniform discretization format. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 436-446 (in Chinese)) Chung J, Hulbert GM. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. Journal of Applied Mechanics, 1993, 60(2): 371-375 Chang SY. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics, 2002, 128(9): 935-947 Chang SY. An explicit method with improved stability property. International Journal for Numerical Methods in Engineering, 2009, 77(8): 1100-1120 Chen C, Ricles JM. Development of direct integration algorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics, 2008, 134(8):676-683 Kolay C, Ricles JM. Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation. Earthquake Engineering and Structural Dynamics, 2014, 43(9): 1361-1380 刘春生, 吴庆宪. 现代控制工程基础. 北京:科学出版社, 2011 (Liu Chunsheng, Wu Qingxian. Fundamentals of Modern Control Engineering. Beijing: Science Press, 2011 (in Chinese)) Chen C, Ricles JM. Stability analysis of direct integration algorithms applied to nonlinear structural dynamics. Journal of Engineering Mechanics, 2008, 134(9):703-711 Hughes TJR. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Mineola, New York: Dover Publications Inc, 2000 于开平,邹经湘.结构动力响应数值算法耗散和超调特性设计.力学学报, 2005, 37(4):467-476 (Yu Kaiping, Zou Jingxiang. Two time integration algorithms with numerical dissipation and without overshoot for structural dynamics. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(4):467-476 (in Chinese)) Yu KP. A new family of generalized-α time integration algorithms without overshoot for structural dynamics. Earthquake Engineering and Structural Dynamics, 2008, 37(12):1389-1409 张立红, 刘天云, 李庆斌, 等. 结构动力问题的高精度组合差分时程积分法.计算力学学报, 2013, 30(4):491-495 (Zhang Lihong, Liu Tianyun, Li Qingbin, et al. A high accurate combination-difference time integration scheme for problems in structural dynamics. Chinese Journal of Computational Mechanics, 2013, 30(4): 491-495 (in Chinese)) -

计量
- 文章访问数: 1124
- HTML全文浏览量: 57
- PDF下载量: 966
- 被引次数: 0