EI、Scopus 收录

留言板

 引用本文: 李琦, 邱志平, 张旭东. 基于二阶摄动法求解区间参数结构动力响应[J]. 力学学报, 2015, 47(1): 147-153.
Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153. doi: 10.6052/0459-1879-14-088
 Citation: Li Qi, Qiu Zhiping, Zhang Xudong. SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 147-153.

• 中图分类号: O327

SECOND-ORDER PARAMETER PERTURBATION METHOD FOR DYNAMIC STRUCTURES WITH INTERVAL PARAMETERS

Funds: The project was supported by the 111 Project (B07009), the National Natural Science Foundation of China (11372025, 11002013), the Defense Industrial Technology Development Program (A0820132001, JCKY2013601B) and Aeronautical Science Foundation of China (2012ZA51010).
• 摘要: 在处理区间参数结构动力响应问题时,现有的分析方法大多局限于一阶区间分析方法. 如果参数的不确定量稍大,采用一阶区间分析方法对结构动力响应范围进行估计可能会失效,所以需要考虑二阶区间分析方法.但是采用基于区间运算的二阶区间分析方法得到的结果将会对动力响应范围过分高估. 为了克服以上缺点,首先基于二阶摄动法得到结构动力响应广义函数. 然后通过求解此动力响应函数的最大和最小值,将结构动力响应区间的问题转化为序列低维箱型约束下的二次规划问题. 最后采用DC 算法(di erence of convex functionsalgorithm) 对这些箱型约束下的二次规划问题进行求解. 这样可以在不引入过多计算量的情况下,避免了对动力响应范围的过分估计. 通过数值算例,将该方法和其他区间分析方法进行比较,验证了该方法的有效性与精确性.

•  Qiu ZP, Wang XJ. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures, 2003, 40: 5423-5439 邱志平,马力红, 王晓军. 不确定非线性结构动力响应的区间分析方法.力学学报,2006,38(5):645-651 (Qiu Zhiping, Ma Lihong, Wang Xiaojun. Interval analysis for dynamic response of nonlinear structures with uncertainties. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5): 645-651 (in Chinese)) Chen SH, Lian HD, Yang XW. Dynamic response analysis for structures with interval parameters. Structural Engineering and Mechanics, 2002, 13(3): 299-312 Qiu ZP, Wang XJ. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. International Journal of Solids and Structures, 2005, 42 (18-19): 4958-4970 Qiu ZP, Ni Z. Interval modal superposition method for impulsive response of structures with uncertain-but-bounded external loads. Applied Mathematical Modelling, 2011, 35: 1538-1550 Chen SH, Wu J. Interval optimization of dynamic response for structures with interval parameters. Computers and Structures, 2004, 82: 1-11 Chen SH, Song M, Chen YD. Robustness analysis of responses of vibration control structures with uncertain parameters using interval algorithm. Structural Safety, 2007, 29: 94-111 邱志平,邱薇,王晓军. 复合材料层合梁自由振动的区间分析. 北京航空航天大学学报,2006,32(7):838-842 (Qiu Zhiping, Qiu Wei, Wang Xiaojun. Intervalanalysis for free vibration of composite lam inated beams. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(7): 838-842 (in Chinese)) Qiu ZP, Ma LH, Wang XJ. Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty. Journal of Sound and Vibration, 2009, 319: 531-540 An LTH, Tao PD. A branch and bound method via d.c.optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. Journal of Global Optimization, 1998, 13: 171-206 李 杰.随机结构系统.北京:科学出版社,1996 (Li Jie. Stochastic Structural System. Beijing: Science Press, 1996 (in Chinese)) Liu WK, Belytschko T. A computational method for the determination of the probabilistic distribution of the dynamic response of structures. A Mani-Computer-aided Engineering, ASME PVP, 1985, 98(5): 243-248 Shi YH, Eberhart RC. A modified particle swarm optimizer. In: in Proc IEEE Congr Evol Comput, 1998. 69-73 Svanberg K. The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng, 1987, 24: 359-373 Tao PD, Duality EBS. D.c. (difference of convex functions) optimization: Subgradient methods, In: Trends in Mathematical Optimization. International Series of Numer Math, 1988, 84: 276-294 Tao PD, An LTH. D.c. optimization algorithm for solving the trust region sub-problem. SIAM Journal on Optimization, 1998. 8(2): 1-30

计量
• 文章访问数:  1074
• HTML全文浏览量:  43
• PDF下载量:  887
• 被引次数: 0
出版历程
• 收稿日期:  2014-04-01
• 修回日期:  2014-09-19
• 刊出日期:  2015-01-18

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈