EI、Scopus 收录
中文核心期刊
高铨, 邱翔, 夏玉显, 李家骅, 刘宇陆. 基于LBM的壁湍流跨尺度能量传递结构统计[J]. 力学学报, 2021, 53(5): 1257-1267. DOI: 10.6052/0459-1879-20-432
引用本文: 高铨, 邱翔, 夏玉显, 李家骅, 刘宇陆. 基于LBM的壁湍流跨尺度能量传递结构统计[J]. 力学学报, 2021, 53(5): 1257-1267. DOI: 10.6052/0459-1879-20-432
Gao Quan, Qiu Xiang, Xia Yuxian, Li Jiahua, Liu Yulu. STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1257-1267. DOI: 10.6052/0459-1879-20-432
Citation: Gao Quan, Qiu Xiang, Xia Yuxian, Li Jiahua, Liu Yulu. STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1257-1267. DOI: 10.6052/0459-1879-20-432

基于LBM的壁湍流跨尺度能量传递结构统计

STRUCTURE STATISTICS OF SCALE TO SCALE ENERGY TRANSFER OF WALL TURBULENCE BASED ON LBM

  • 摘要: 壁湍流不同尺度间能量传输特性存在着明显的各向异性, 了解能量不同尺度间传递的空间分布是进一步构造高保真各向异性大涡模拟亚格子模式的前提. 基于格子Boltzmann数值(lattice Boltzmann method, LBM)模拟方法对雷诺数Re_\tau =180的槽道湍流进行直接数值模拟. 结果与公开的槽道湍流数据库进行对比, 平均速度剖面、雷诺应力和脉动速度均方根均取得了较好的一致性, 验证了LBM方法模拟槽道湍流的可靠性. 对模拟后的数据采用空间滤波方法得到不同尺度间能量交换量的空间分布场, 结合结构识别捕捉方法——聚类分析法对不同尺度间能量传输结构的空间分布特性进行了分析. 结果表明尺度间能量传输结构在全流场物理空间中主要为小尺寸结构, 结构的体积概率密度呈现出-4/5幂律, 按结构距壁面最小距离以结构距壁面距离又可将结构划分为附着结构和分离结构, 其中附着结构以较小的数量占比达到了较高的体积占比, 表明附着结构多为大尺寸结构, 进一步的对附着结构的统计表明结构在尺寸上存在着一定的幂律关系, 表明不同尺度间能量输运结构也具有Townsend提出的附面涡的自相似性, 最后对能量正反传附着结构的成对特性研究发现, 能量正传\!-\!反传结构对倾向于沿展向并排排列.

     

    Abstract: For the reason that the scale-to-scale energy transfer characteristics of wall bounded turbulence exhibit strong anisotropy in three dimensional physical space, understanding the spatial distribution of energy scale-to-scale transfer is of great importance for the further construction of high-fidelity anisotropic large eddy simulation models. Direct numerical simulation were performed at Reynolds number Re_\tau =180 by using lattice Boltzmann method (LBM). In comparison with the open source channel flow turbulence database, both the mean velocity and turbulent variables, such as Reynolds stress and velocity fluctuations, agree well with the results of Kim et al. (1987) and Moser et al. (2015). The ability and validity of LBM on simulating turbulent channel flow were verified. The filter-space technique is used to obtain the scale-to-scale transport of kinetic energy, and the statistical results show that the backward scatter and forward scatter contributions to the SGS dissipation were comparable. Combined with the novel structure identification method, the distribution and geometry properties of the energy flux structure is quantitatively investigated by the clustering methodology. The results show that small scale structures account for the majority in number, and the volume probability density distribution presents a -4/5 power law. The structures can further be divided into wall attached structures and wall detached structures according to their minimal distance to the wall. In spite of the relatively small number fraction, the attached structure accounts for most of volume fraction, which shows that most of the attached structures are large scale structures. Further statistics of the attached structures exhibit that the size of the structure has a certain power law relationship, indicating that the scale-to-scale energy transport structure also has the self similarity of the attached eddy hypothesis which proposed by Townsend. The forward and backward energy flux structure pairs tend to be arranged side by side along the span direction.

     

/

返回文章
返回