[1] | 金学松, 刘启跃. 轮轨摩擦学. 北京: 中国铁道出版社, 2004 | [1] | ( Jin Xuesong, Liu Qiyue. Tribology of Wheel and Rail. Beijing: China Railway Publishing House, 2004 (in Chinese)) | [2] | Wu L, Wen ZF, Li W, et al. Thermo-elastic-plastic finite element analysis of wheel/rail sliding contact. Wear, 2011,271:437-443 | [3] | Srivastava JP, Sarkar PK, Ranjan V. Effects of thermal load on wheel-rail contacts: A review. Journal of Thermal Stresses, 2016,39:1389-1418 | [4] | Ahlstr?m J, Karlsson B. Modelling of heat conduction and phase transformations during sliding of railway wheels. Wear, 2002,253:291-300 | [5] | Chen YZ, He CG, Zhao XJ, et al. The influence of wheel flats formed from different braking conditions on rolling contact fatigue of railway wheel. Engineering Failure Analysis, 2018,93:183-199 | [6] | Chen S, Zhao GT, Wang HY, et al. Study of wheel wear influenced by tread temperature rising during tread braking. Wear, 2019, 438-439:203046 | [7] | Tanvir MA. Temperature rise due to slip between wheel and rail—An analytical solution for Hertzian contact. Wear, 1980,61:295-308 | [8] | Knothe K, Liebelt S. Determination of temperatures for sliding contact with applications for wheel-rail systems. Wear, 1995,189:91-99 | [9] | Ertz M, Knothe K. A comparison of analytical and numerical methods for the calculation of temperatures in wheel/rail contact. Wear, 2002,253:498-508 | [10] | Fischer FD, Daves W, Werner EA. On the temperature in the wheel-rail rolling contact. Fatigue & Fracture of Engineering Materials & Structures, 2003,26(10):999-1006 | [11] | Wu HW, Chen YY, Horong JH. Contact temperature under three-body dry friction conditions. Wear, 2015, 330-331:85-92 | [12] | Ling FF, Rice JS. Surface temperature with temperature-dependent thermal properties. ASLE Transactions, 1966,9(2):195-201 | [13] | 梁钰, 郑保敬, 高效伟 等. 基于POD模型降阶法的非线性瞬态热传导分析. 中国科学: 物理学力学天文学, 2018,48(12):124603 | [13] | ( Liang Yu, Zheng Baojing, Gao Xiaowei, et al. Reduced order model analysis method via proper orthogonal decomposition for nonlinear transient heat conduction problems. Scientia Sinica Physica, Mechanica & Astronomica, 2018,48(12):124603 (in Chinese)) | [14] | 朱强华, 杨恺, 梁钰 等. 基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法. 力学学报, 2020,52(1):124-138 | [14] | ( Zhu Qianghua, Yang Kai, Liang Yu, et al. A novel fast algorithm based on model order reduction for one class of transient nonlinear heat conduction problem. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):124-138 (in Chinese)) | [15] | 戴婷, 戴宏亮, 李军剑 等. 含孔隙变厚度FG圆板的湿热力学响应. 力学学报, 2019,51(2):512-523 | [15] | ( Dai Ting, Dai Hongliang, Li Junjian, et al. Hygrothermal mechanical behavior of a FG circular plate with variable thickness. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):512-523 (in Chinese)) | [16] | Fabre A, Hristov J. On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity. Heat and Mass Transfer, 2017,53(1):177-204 | [17] | 林府标, 张千宏, 张俊 等. 一维广义热传导方程的精确解. 重庆师范大学学报(自然科学版), 2018,35(4):88-92 | [17] | ( Lin Fubiao, Zhang Qianhong, Zhang Jun, et al. Exact solutions of one-dimensional general heat conduction equation. Journal of Chongqing Normal University $($Natural Science$)$, 2018,35(4):88-92 (in Chinese)) | [18] | Ghasemi SE, Zolfagharian A, Hatami M, et al. Analytical thermal study on nonlinear fundamental heat transfer cases using a novel computational technique. Applied Thermal Engineering, 2016,98:88-97 | [19] | Pasha AV, Jalili P, Ganji DD. Analysis of unsteady heat transfer of specific longitudinal fins with temperature-dependent thermal coefficients by DTM. Alexandria Engineering Journal, 2018,57(4):3509-3521 | [20] | 张英琦, 乐贵高, 马大为 等. 同心筒热发射非线性热传导研究. 工程热物理学报, 2018,39(10):2251-2259 | [20] | ( Zhang Yingqi, Le Guigao, Ma Dawei, et al. Research on nonlinear thermal conduction of concentric canister launcher. Journal of Engineering Thermophysics, 2018,39(10):2251-2259 (in Chinese)) | [21] | 李艾伦, 傅卓佳, 李柏纬 等. 含肿瘤皮肤组织传热分析的广义有限差分法. 力学学报, 2018,50(5):1198-1205 | [21] | ( Li Ailun, Fu Zhuojia, Li Powei, et al. Generalized finite difference method for bioheat transfer analysis on skin tissue with tumors. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1198-1205 (in Chinese)) | [22] | 刘硕, 方国东, 王兵 等. 近场动力学与有限元方法耦合求解热传导问题. 力学学报, 2018,50(2):339-348 | [22] | ( Liu Shuo, Fang Guodong, Wang Bing, et al. Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):339-348 (in Chinese)) | [23] | Wiest M, Kassa E, Daves W, et al. Assessment of methods for calculating contact pressure in wheel-rail/switch contact. Wear, 2008,265(9-10):1439-1445 | [24] | Skrypnyk R, Ekh M, Nielsen JCO, et al. Prediction of plastic deformation and wear in railway crossings—Comparing the performance of two rail steel grades. Wear, 2019, 428-429:302-314 | [25] | 王雯, 吴洁蓓, 高志强 等. 机械结合面切向接触阻尼计算模型. 力学学报, 2018,50(3):633-642 | [25] | ( Wang Wen, Wu Jiebei, Gao Zhiqiang, et al. A calculation model for tangential contact damping of machine joint interfaces. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):633-642 (in Chinese)) | [26] | Wei YP, Wu YP, Chen K, et al. Experiment research on friction coefficient between a steel plate and rail in transient sliding thermal contact through a pendulum. Results in Physics, 2018,11:763-768 | [27] | Zhu HB, Zhao YT, He ZF, et al. An elastic-plastic contact model for line contact structures. Science China Physics, Mechanics & Astronomy, 2018,61:054611 | [28] | Brizmer V, Kligerman Y, Etsion I. The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. International Journal of Solids and Structures, 2006,43(18-19):5736-5749 | [29] | Carter FW. On the action of a locomotive driving wheel. Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 1926,112(760):151-157 | [30] | Xiao JH, Zhang FC, Qian LH. Numerical simulation of stress and deformation in a railway crossing. Engineering Failure Analysis, 2011,18(8):2296-2304 | [31] | Chen YC, Lee SY. Elastic-plastic wheel-rail thermal contact on corrugated rails during wheel braking. Journal of Tribology, 2009,131:011401 | [32] | 李伟, 温泽峰, 吴磊 等. 车轮滑动时钢轨热弹塑性有限元分析. 机械工程学报, 2010,46(10):95-101 | [32] | ( Li Wei, Wen Zefeng, Wu Lei, et al. Thermo-elasto-plastic finite element analysis of rail during wheel sliding. Journal of Mechanical Engineering, 2010,46(10):95-101 (in Chinese)) | [33] | 刘洋, 刘振, 吴亚平 等. 考虑变摩擦系数的轮轨系统滑动接触热弹塑性应力分析. 中国铁道科学, 2015,36(5):87-93 | [33] | ( Liu Yang, Liu Zhen, Wu Yaping, et al. Thermo-elastic-plastic analysis of wheel-rail sliding contact stress with variable friction coefficient. China Railway Science, 2015,36(5):87-93 (in Chinese)) | [34] | Wu Y, Wu MG, Zhang YH, et al. Experimental study of heat and mass transfer of a rolling wheel. Heat and Mass Transfer, 2014,50(2):151-159 | [35] | Wang M, Zhang YH, Bai J, et al. Experimental study of convective heat transfer at the surface of a rail due to train passage. Proceedings of the Institution of Mechanical Engineers, Part F$:$ Journal of Rail and Rapid Transit, 2015,229(2):201-209 | [36] | Wu YP, Wei YP, Liu Y, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials. Applied Thermal Engineering, 2017,115:455-462 | [37] | Naeimi M, Li SG, Li ZL, et al. Thermomechanical analysis of the wheel-rail contact using a coupled modelling procedure. Tribology International, 2018,117:250-260 | [38] | 王海新, 吴亚平, 刘振 等. 对流换热系数对轮轨滑动接触特性的影响分析. 铁道科学与工程学报, 2018,15(2):336-342 | [38] | ( Wang Haixin, Wu Yaping, Liu Zhen, et al. Influence analysis of coefficients of convective heat transfer on the characteristic of wheel/rail sliding contact. Journal of Railway Science and Engineering, 2018,15(2):336-342 (in Chinese)) |
|