EI、Scopus 收录
中文核心期刊

基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究

李东波, 刘秦龙, 张鸿驰, 雷蓬勃, 赵冬

李东波, 刘秦龙, 张鸿驰, 雷蓬勃, 赵冬. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究[J]. 力学学报, 2019, 51(5): 1393-1402. DOI: 10.6052/0459-1879-19-175
引用本文: 李东波, 刘秦龙, 张鸿驰, 雷蓬勃, 赵冬. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究[J]. 力学学报, 2019, 51(5): 1393-1402. DOI: 10.6052/0459-1879-19-175
Li Dongbo, Liu Qinlong, Zhang Hongchi, Lei Pengbo, Zhao Dong. STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1393-1402. DOI: 10.6052/0459-1879-19-175
Citation: Li Dongbo, Liu Qinlong, Zhang Hongchi, Lei Pengbo, Zhao Dong. STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1393-1402. DOI: 10.6052/0459-1879-19-175
李东波, 刘秦龙, 张鸿驰, 雷蓬勃, 赵冬. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究[J]. 力学学报, 2019, 51(5): 1393-1402. CSTR: 32045.14.0459-1879-19-175
引用本文: 李东波, 刘秦龙, 张鸿驰, 雷蓬勃, 赵冬. 基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究[J]. 力学学报, 2019, 51(5): 1393-1402. CSTR: 32045.14.0459-1879-19-175
Li Dongbo, Liu Qinlong, Zhang Hongchi, Lei Pengbo, Zhao Dong. STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1393-1402. CSTR: 32045.14.0459-1879-19-175
Citation: Li Dongbo, Liu Qinlong, Zhang Hongchi, Lei Pengbo, Zhao Dong. STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1393-1402. CSTR: 32045.14.0459-1879-19-175

基于分子动力学的氧化石墨烯拉伸断裂行为与力学性能研究

基金项目: 1)国家自然科学基金(51878547);国家自然科学基金(51641809);中国博士后基金(2018M633478);陕西省博士后基金资助项目
详细信息
    通讯作者:

    李东波

  • 中图分类号: O341

STUDY ON TENSILE FRACTURE BEHAVIOR AND MECHANICAL PROPERTIES OF GO BASED ON MOLECULAR DYNAMICS METHOD

  • 摘要: 与石墨烯相比,氧化石墨烯(graphene oxide, GO)的亲水性、分散性和反应活性更好,更易于作为增强材料而研发生成性能超常的复合材料,但另一方面,由于其电子结构较为复杂,致使目前有关力学方面的研究存在一定差异.本文利用分子动力学方法,建立了羟基、羧基和环氧基等官能团随机分布的GO原子模型;通过单向拉伸模拟,分析了其断裂行为,结果表明,远离羟基和羧基的环氧基对断裂具有"诱导"作用,并从化学成键、体系能量和应力分布三个角度对其机理进行了阐释;此外,进一步研究了拉伸应力$\!$-$\!$-$\!$应变曲线、极限强度、极限应变等力学性能与含氧官能团覆盖度间的关系,结果表明,极限强度、极限应变均随含氧官能团覆盖度的增大而呈减小趋势.分析认为,主要原因是官能团的出现对石墨烯面内的sp$^{2}$杂化形式造成了破坏,进而使得原子间键合能弱化,随着含氧官能团的覆盖度的增大,被弱化的键合能的数量和程度将越大,从而使得GO的极限强度、极限应变等越低. 研究结果可为GO的基础研究和工程应用提供参考.
    Abstract: In comparison with graphene, the graphene oxide (GO) has better hydrophilicity, dispersion performance and reaction activity, which makes it easier to interact with other materials to form composites with excellent properties. But on the other hand, due to the complexity of the electronic structure of the GO, there are some differences in the research of mechanics of GO at present. For this purpose, in the present paper, a random distribution model of GO containing the hydroxyl groups,epoxy groups and carboxyl groups was established based on the molecular dynamics method. And then, the tensile fracture behavior was analyzed by uniaxial tensile numerical simulation. The results illustrated that the epoxy groups which are far away from hydroxyl and carboxyl groups had induce effect on the fracture of GO. In addition, the mechanisms were explained from three aspects,which are the chemical bonding, system energy and stress distribution. Additionally, the influence of the coverage of oxygen-containing functional groups of hydroxyl groups, epoxy groups and carboxyl groups on the stress-strain curve, ultimate strength and ultimate strain of GO were further studied. The results showed that the ultimate strength and ultimate strain of GO decreased with the increase of the coverage of oxygen-containing functional groups of hydroxyl groups,epoxy groups and carboxyl groups. According to the analysis, the main reason is that the oxygen-containing functional groups of hydroxyl groups, epoxy groups and carboxyl groups destroy the sp$^{2}$hybrid form in the original graphene surface, thus weakening the bonding energy between atoms. Thereby, The greater the coverage of the oxygen-containing functional groups of hydroxyl groups, epoxy groups and carboxyl groups, the greater the amount and degree of weakened bonding energy, and the lower the ultimate strength of GO. The research results have certain reference value and significance for engineering application and basic research of GO.
  • [1] Geim AK, Novoselov KS . The rise of graphene. Nature Materials, 2007,6(3):183-191
    [2] Wang Y, Liu ZS . Spontaneous rolling-up and assembly of graphene designed by using defects. Nanoscale, 2018,10(14):6487-6495
    [3] Wang Y, Lei JC, Liu ZS . Molecular dynamics study on the anisotropic Poisson's ratio of the graphene. Diamond and Related Materials, 2019,93:66-74
    [4] Wan J, Jiang JW, Park HS . Negative Poisson's ratio in graphene oxide. Nanoscale, 2017,9(11):4007-4012
    [5] He LC, Guo SS, Lei JC , et al. The effect of Stone-Thrower-Wales defects on mechanical properties of graphene sheets-a molecular dynamics study. Carbon, 2014,75:124-132
    [6] Andrew TS , LaChance AM, Zeng SS, et al. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 2019: 31-47
    [7] Cao R, Chen Z, Wu YH , et al. Precisely controlled growth of poly (ethyl acrylate) chains on graphene oxide and the formation of layered structure with improved mechanical properties. Composites Part A: Applied Science and Manufacturing, 2017,93:100-106
    [8] Chen D, Feng HB, Li JH . Graphene oxide: Preparation, functionalization, and electrochemical applications. Chemical Reviews, 2012,112(11):6027-6053
    [9] Mohamed MA, Yehia AM, Banks CE , et al. Novel MWCNTs/graphene gxide/pyrogallol composite with enhanced sensitivity for biosensing applications. Biosensors & Bioelectronics}, 2017,89(Pt 2):1034-1041
    [10] Sun ST, Wu PY , A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. Journal of Materials and Chemistry, 2011,21(12):4095-4097
    [11] Chen Y, Xu PF, Shu Z , et al. Multifunctional graphene oxide-based triple stimuli-responsive nanotheranostics. Advanced Functional Materials, 2014,24(28):4386-4396
    [12] Thakur S, Karak N . Multi-stimuli responsive smart elastomeric hyperbranched polyurethane/reduced graphene oxide nanocomposites. Journal of Materials Chemistry A, 2014,2(36):14867-14875
    [13] Kuilla T, Bhadra S, Yao DH , et al. Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010,35(11):1350-1375
    [14] Wang C, Liu N, Allen R , et al. A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. Advanced Materials, 2013,25(40):5785-5790
    [15] Li DB, Zhang HC, Lei PB , et al. Synergistic effects of fly ash and graphene oxide on workability,mechanical property of cement-based materials. Science of Advanced Materials, 2019,11:1-9
    [16] Zhang EZ, Wang T, Zhao L , et al. Fast self-healing of graphene oxide-hectorite clay-Poly ($N$,$N$-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation. ACS Applied Materials & Interfaces, 2014,6(24):22855-22861
    [17] Pan CG, Liu LB, Chen Q , et al. Tough, stretchable, compressive novel polymer/graphene oxide nanocomposite hydrogels with excellent self-healing performance. ACS Applied Materials & Interfaces, 2017,9(43):38052-38061
    [18] Lin CH, Sheng DK, Liu XD , et al. A self-healable nanocomposite based on dual-crosslinked graphene oxide/polyurethane. Polymer, 2017,127:241-250
    [19] Syrett JA, Becer CR, Haddleton DM . Self-healing and self-mendable polymers. Polymer Chemistry, 2010,1(7):978-989
    [20] Geng Y, Li J, Wang SJ , et al. Amino functionalization of graphite nanoplatelet. Journal of Nanoscience and Nanotechnology, 2008,8(7):6238-6246
    [21] Zheng QB, Geng Y, Wang SJ , et al. Effects of functional group on the mechanical and wrinkling properties of graphene sheets. Carbon, 2010,48(15):4315-4322
    [22] Pei QX, Zhang YW, Shenoy VB . A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 2010,48(3):898-904
    [23] Pei QX, Zhang YW, Shenoy VB . Mechanical properties of methyl functionalized graphene: A molecular dynamics study. Nanotechnology, 2010,21(11):115709-115716
    [24] Gomez-Navarro C, Burghard M, Kern K . Elastic properties of chemically derived single graphene sheets. Nano Letters, 2008,8(7):2045-2049
    [25] Suk JW, Piner RD, An J , et al. Mechanical properties of monolayer graphene oxide. ACS Nano, 2010,4(11):6557-6564
    [26] Paci JT, Belytschko T, Schatz GC . Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. The Journal of Physical Chemistry C, 2007,111(49):18099-18111
    [27] 黄仕平, 吴杰, 胡俊亮 等. 基于分子动力学$\!$-$\!$-$\!$格林函数法的微凸体接触数值分析. 力学学报, 2017,49(4):961-967
    [27] ( Huang Shiping, Wu Jie, Hu Junliang , et al. Numerical analysis of asperity contact model based on molecular dynamics Green's function method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):961-967 (in Chinese))
    [28] 王帅, 姚寅, 杨亚政 等. 双层金属纳米板界面能密度的尺寸效应. 力学学报, 2017,49(5):978-984
    [28] ( Wang Shuai, Yao Yin, Yang Yazheng , et al. Size effect of the interface energy density in bi-nano-scaled-metallic plates. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):978-984 (in Chinese))
    [29] 赵东伟, 郁汶山, 申胜平 . 含氢原子缺陷晶界的剪切行为. 力学学报, 2017,49(3):605-615
    [29] ( Zhao Dongwei, Yu Wenshan, Shen Shengping . Shear response of grain boundaries with hydrogen defects. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):605-615 (in Chinese))
    [30] 刘立钊 . 弯曲碳纳米管和氧化石墨烯的原子尺度模拟. [博士论文]. 大连:大连理工大学, 2014
    [30] ( Liu Lizhao . Atomistic simulations of the curved carbon nanotubes and graphene oxide. [PhD Thesis]. Dalian: Dalian University of Technology, 2014 (in Chinese))
    [31] Plimpton S. Fast Parallel Algorithms for Short-range Molecular Dynamics. Academic Press Professional, Inc. 1995
    [32] Chenoweth K, Van Duin ACT, Goddard WA . ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical chemistry A, 2008,112(5):1040-1053
    [33] Medhekar NV, Ramasubramaniam A, Ruoff RS , et al. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano, 2010,4(4):2300-2306
    [34] Feng MY, Jiang XZ, Luo KH . A reactive molecular dynamics simulation study of methane oxidation assisted by platinum/graphene-based catalysts. Proceedings of the Combustion Institute, 2019,37(4):5473-5480
    [35] Cui T, Mukherjee S, Cao CH , et al. Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide. Carbon, 2018,136:168-175
  • 期刊类型引用(8)

    1. 李晓蔚,赵小亮,王剑. 异氰酸酯化氧化石墨烯/水性聚氨酯的合成及性能. 印染. 2023(02): 42-45 . 百度学术
    2. 刘文娟. 氧化石墨烯改性混凝土的制备及力学性能和抗冻性能的研究. 功能材料. 2022(08): 8159-8164 . 百度学术
    3. 王利军,朱艺,林本海. 氧化石墨烯-粉煤灰改性高水胶比注浆材料性能研究. 广东建材. 2022(09): 54-59 . 百度学术
    4. 张金涛,文聘,晏石林,何大平. 多层氧化石墨烯的三维弹性常数及氧化度对力学性能的影响. 固体力学学报. 2022(05): 625-635 . 百度学术
    5. 高扬. 原子力显微镜在二维材料力学性能测试中的应用综述. 力学学报. 2021(04): 929-943 . 本站查看
    6. 李东波,董仓,芦苇,苏梦龙. 基于矿渣粉与氧化石墨烯协同效应的水泥基材料冻融损伤力学性能研究. 应用力学学报. 2021(04): 1431-1440 . 百度学术
    7. 刘俊,董淑宏,赵军华. 氢键对氧化石墨烯复合结构层间剪切行为影响研究. 固体力学学报. 2021(04): 443-454 . 百度学术
    8. 李东波,张鸿驰,刘春燕,赵冬,芦苇. 氧化石墨烯与粉煤灰增强水泥基材料的协同机理及其抗压性能尺寸效应. 应用力学学报. 2021(05): 1869-1876 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  2083
  • HTML全文浏览量:  275
  • PDF下载量:  507
  • 被引次数: 21
出版历程
  • 收稿日期:  2019-07-03
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回