EI、Scopus 收录
中文核心期刊

基于均匀化理论的页岩微观多孔黏土强度特性

韩强, 屈展, 叶正寅

韩强, 屈展, 叶正寅. 基于均匀化理论的页岩微观多孔黏土强度特性[J]. 力学学报, 2019, 51(3): 940-948. DOI: 10.6052/0459-1879-18-214
引用本文: 韩强, 屈展, 叶正寅. 基于均匀化理论的页岩微观多孔黏土强度特性[J]. 力学学报, 2019, 51(3): 940-948. DOI: 10.6052/0459-1879-18-214
Qiang Han, Zhan Qu, Zhengyin Ye. STUDY ON STRENGTH CHARACTERISTICS OF MICROPOROUS CLAY IN SHALE BASED ON HOMOGENIZATION THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 940-948. DOI: 10.6052/0459-1879-18-214
Citation: Qiang Han, Zhan Qu, Zhengyin Ye. STUDY ON STRENGTH CHARACTERISTICS OF MICROPOROUS CLAY IN SHALE BASED ON HOMOGENIZATION THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 940-948. DOI: 10.6052/0459-1879-18-214
韩强, 屈展, 叶正寅. 基于均匀化理论的页岩微观多孔黏土强度特性[J]. 力学学报, 2019, 51(3): 940-948. CSTR: 32045.14.0459-1879-18-214
引用本文: 韩强, 屈展, 叶正寅. 基于均匀化理论的页岩微观多孔黏土强度特性[J]. 力学学报, 2019, 51(3): 940-948. CSTR: 32045.14.0459-1879-18-214
Qiang Han, Zhan Qu, Zhengyin Ye. STUDY ON STRENGTH CHARACTERISTICS OF MICROPOROUS CLAY IN SHALE BASED ON HOMOGENIZATION THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 940-948. CSTR: 32045.14.0459-1879-18-214
Citation: Qiang Han, Zhan Qu, Zhengyin Ye. STUDY ON STRENGTH CHARACTERISTICS OF MICROPOROUS CLAY IN SHALE BASED ON HOMOGENIZATION THEORY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 940-948. CSTR: 32045.14.0459-1879-18-214

基于均匀化理论的页岩微观多孔黏土强度特性

基金项目: 1) 国家自然科学基金(51704233,51674200),中国博士后科学基金(2017M613207)资助项目.
详细信息
    通讯作者:

    韩强

  • 中图分类号: TE135;

STUDY ON STRENGTH CHARACTERISTICS OF MICROPOROUS CLAY IN SHALE BASED ON HOMOGENIZATION THEORY

  • 摘要: 页岩强度是页岩油气开发所必需的基础技术参数之一,对页岩强度的研究贯穿于钻完井、压裂工艺施工的全过程.常规宏观室内实验存在试样获取困难、耗时较长,受井下工矿制约,地球物理方法获取资料品质欠佳且增加了井下设备卡、埋风险.因此,提出基于均匀化理论评价页岩微观多孔黏土强度的方法,进行多孔黏土组成与力学分析.基于耗散能原理和Drucker-Prager准则,开展了微观多孔黏土的强度与$\pi$函数的应变求解分析;讨论黏土颗粒与粒间孔隙的力学特性,建立多孔黏土的均匀化应变能;采用强度均匀化理论构建微观非线性函数模型,建立与多孔黏土组成、摩擦系数、内聚系数等参数相关的均匀化函数模型;基于纳米力学实验、量纲分析和有限元模拟,分析多孔黏土硬度、强度与组成的内在关系.研究结果表明,页岩微观多孔黏土的弹性模量和硬度与黏土堆积密度正相关,当黏土堆积密度一定时,硬度与内聚系数的比值受摩擦系数影响较大,为非线性递增;通过量纲分析和有限元模拟,求解页岩微观多孔黏土关于硬度--强度--堆积密度的$\pi$函数,揭示页岩微观黏土矿物的组成与力学性质的关系,为进一步深入研究页岩细观强度参数和宏观强度预测奠定基础.
    Abstract: As one of the basic parameters necessary for shale oil and development, the analysis of shale strength is carried out in the whole process of drilling and hydraulic fracturing. Macroscopic experiments have problems such as sample preparation and time consuming. Limited by downhole conditions, not only the quality of data obtained by geophysical method is not good enough for mechanical analysis, but also it increases the risk of equipment stuck and buried in downhole. In this paper, the strength evaluation method of microporous clay in shale was proposed based on the homogenization theory. The composition and mechanical analysis of porous clay was carried out. Based on dissipative energy principle and Drucker-Prager criterion, the strength evaluation of porous clay was transformed into a solution to the strain of the microscopic $\pi $ function. The mechanical properties of the intergranular pores of clay were discussed and the homogenization strain energy of porous clay was established. The microscopic nonlinear function was constructed based on the strength homogenization theory. A homogenization $\pi$ function was established in relation to parameters such as the composition of porous clay, coefficient of friction and cohesion. Based on nanomechanical experiments, dimensional analysis and finite element simulation, the intrinsic relationship between hardness, strength and composition of porous clay was evaluated. The results show that the elastic modulus and hardness of microporous clay in shale are positively correlated with the packing density of shale. The ratio of hardness to cohesion coefficient exhibits a nonlinear increase with increasing friction coefficient when the clay packing density is constant. The $\pi $ function of porous clay with respect to hardness, strength and clay packing density is solved by dimensional analysis and finite element simulation. The composition and mechanical relationship of shale microporous clay are described. It lays a foundation for further research on shale meso-strength parameters and macro-strength prediction.
  • [1] 陈勉, 葛洪魁, 赵金洲等. 页岩油气高效开发的关键基础理论与挑战. 石油钻探技术, 2015, 43(5): 7-14
    [1] (Chen Mian, Ge Hongkui, Zhao Jinzhou, et al.The key fundamentals for the efficient exploitation of shale oil and gas and its related challenges. Petroleum Drilling Techniques, 2015, 43(5): 7-14 (in Chinese))
    [2] 孙可明, 张树翠. 含层理页岩气藏水力压裂裂纹扩展规律解析分析.力学学报, 2016, 48(5):1229-1237
    [2] (Sun Keming, Zhang Shucui.Hydraulic fracture propagation in shale gas bedding reservoir analytical analysis. Chinese Journal of Theoretical and Applied Mechancis, 2016, 48(5): 1299-1237 (in Chinese))
    [3] 韩铁林, 师俊平, 陈蕴生等. 轴、侧向同卸荷下砂岩力学特性影响的试验研究. 力学学报, 2016, 48(4): 936-943
    [3] (Han Tielin, Shi Junping, Chen Yunsheng, et al.Experimental study on mechanics characteristics of sandstone under axial unloading and radial unloading path. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 936-943 (in Chinese))
    [4] 崔思华, 班凡生, 袁光杰. 页岩气钻完井技术现状及难点分析. 天然气工业, 2011, 31(4): 72-75
    [4] (Cui Sihua, Ban Fansheng, Yuan Guangjie.Status quo and challenges of global shale gas drilling and completion. Natural Gas Industry, 2011, 31(4): 72-75 (in Chinese))
    [5] 罗荣, 曾亚武, 杜欣. 非均质岩石材料宏细观力学参数的关系研究. 岩土工程学报, 2012, 34(12): 2331-2336
    [5] (Luo Rong, Zeng Yawu, Du Xin.Relationship between macroscopic and mesoscopic mechanical parameters of inhomogenous rock material. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2331-2336 (in Chinese))
    [6] Li ZH, Ma Q, Cui JZ.Multi-scale modal analysis for axisymmetric and spherical symmetric structures with periodic configurations. Computer Methods in Applied Mechanics & Engineering, 2017, 317: 1068-1101
    [7] Gianpetro DP, Owen DR.Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano. Netherlands: Springer, 2007
    [8] Cheng YT, Cheng CM.Scaling, dimensional analysis, and indentation measurements. Materials Science & Engineering$:$ R$:$ Reports, 2004, 44(4-5): 91-149
    [9] Cariou S, Ulm FJ, Dormieux L.Hardness--packing density scaling relations for cohesive-frictional porous materials. Journal of the Mechanics and Physics of Solids, 2008, 56(3): 924-952
    [10] Ortega JA, Gathier B, Ulm FJ.Homogenization of cohesive-frictional strength properties of porous composites: Linear comparison composite approach. Journal of Nanomechanics and Micromechanics, 2011, 1(1): 11-23
    [11] Constantinides G, Ulm FJ, Vliet KV.On the use of nanoindentation for cementitious materials. Materials and Structures, 2003, 36(3): 191-196
    [12] Zeszotarski JC, Chromik RR, Vinci RP, et al.Imaging and mechanical property measurements of kerogen via nanoindentation. Geochimica et Cosmochimica Acta, 2004, 68(20): 4113-4119
    [13] Ulm FJ, Abousleiman Y.The nanogranular nature of shale. Acta Geotechnica, 2006, 1(02): 77-88
    [14] Ulm FJ, Vandamme M, Bobko C, et al.Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale. Journal of the American Ceramic Society, 2007, 90(9): 2677-2692
    [15] 韩强, 屈展,叶正寅. 页岩多尺度力学特性研究现状. 应用力学学报, 2018, 35(3): 564-570
    [15] (Han Qiang, Qu Zhan, Ye Zhengyin.Research status of shale multi-scale mechanical properties. Chinese Journal of Applied Mechanics, 2018, 35(3): 564-570 (in Chinese))
    [16] Kumar V, Sondergeld CH, Rai CS. Nano to macro mechanical characterization of shale. SPE Annual Technical Conference and Exhibition, 8-10 Oct, 2012, San Antonio, Texas, USA
    [17] Kumar V, Curtis ME, Gupta N, et al. Estimation of elastic properties of organic matter in Woodford shale through nanoindentation measurements//SPE Canadian Unconventional Resources Conference, 30 October-1 Nov, 2012, Calgary, Alberta, Canada
    [18] Shukla P, Kumar V, Curtis M, et al. Nanoindentation studies on shales. 47th US Rock Mechanics/Geomechanics Symposium, 23-26 Jun, 2013, San Francisco, California, USA
    [19] Mason J, Carloni J, Zehnder A, et al. Dependence of micro-mechanical properties on lithofacies: Indentation experiments on Marcellus shale//SPE/AAPG/SEG Unconventional Resources Technology Conference, 25-27 Aug , 2014, Denver, Colorado, USA
    [20] Chen P, Han Q, Ma TS, et al.The mechanical properties of shale based on micro-indentation test. Petroleum Exploration and Development, 2015, 42(5): 723-732
    [21] Han Q, Qu Z, Ye ZY.Research on the mechanical behavior of shale based on multiscale analysis. Royal Society Open Science, 2018, 5: 181039
    [22] 侯淑娟, 梁慧妍, 汪全中等. 基于迭代法的非线性弹性均质化研究. 力学学报, 2018, 50(4): 135-144
    [22] (Hou Shujuan, Liang Huiyan, Wang Quanzhong, et al.Study on nonlinear elastic homogenization with iterative method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 135-144 (in Chinese))
    [23] 武守信, 魏吉瑞, 杨舒蔚. 基于能量等效原理的应变局部化分析:Ⅰ.一维解析解. 力学学报, 2017, 49(3): 667-676
    [23] (Wu Shouxin, Wei Jirui, Yang Shuwei.Analysis of strain localization by energy equivalence: I. one-dimensional analytical solution. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 667-676 (in Chinese))
    [24] 王增会, 李锡夔. 基于介观力学信息的颗粒材料损伤--愈合与塑性宏观表征. 力学学报, 2018, 50(2): 284-296
    [24] (Wang Zenghui, Li Xikui.Meso-mechanically informed macroscopic characterization of damage-healing-plasticity for granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 284-296 (in Chinese))
    [25] 张研, 张子明. 材料细观力学. 北京: 科学出版社, 2008
    [25] (Zhang Yan, Zhang Ziming.Mesomechanics of Materials. Beijing: Science Press, 2008 (in Chinese))
    [26] Hellmich C, Barthélémy JF, Dormieux L.Mineral--collagen interactions in elasticity of bone ultrastructure--a continuum micromechanics approach. European Journal of Mechanics-A/Solids, 2004, 23(5): 783-810
    [27] Dormieux L, Kondo D, Ulm FJ.Microporofracture and Damage Mechanics, Microporomechanics. New York: John Wiley & Sons, Ltd, 2006: 291-318
    [28] J. Salen?on.Introduction to the yield design theory and its applications to soil mechanics. European Journal of Mechanics A-Solids, 1990, 9(5): 477-500
    [29] Casta?eda PP.New variational principles in plasticity and their application to composite materials. Journal of the Mechanics and Physics of Solids, 1992, 40(8): 1757-1788
    [30] Fritsch A, Dormieux L, Hellmich C, et al.Micromechanics of crystal interfaces in polycrystalline solid phases of porous media: fundamentals and application to strength of hydroxyapatite biomaterials. Journal of Materials Science, 2007, 42(42): 8824-8837
    [31] Maalej Y, Dormieux L, Sanahuja J.Micromechanical approach to the failure criterion of granular media. European Journal of Mechanics-A/Solids, 2009, 28(3): 647-653
    [32] 张研, 韩林. 细观力学基础. 北京: 科学出版社, 2014
    [32] (Zhang Yan, Han Lin.Foundation of Mesomechanics. Beijing: Science Press, 2014: 216-219 (in Chinese))
    [33] Bobko CP, Gathier B, Ortega JA, et al.The nanogranular origin of friction and cohesion in shale---A strength homogenization approach to interpretation of nanoindentation results. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(17): 1854-1876
    [34] Borodich FM, Keer LM, Korach CS.Analytical study of fundamental nanoindentation test relations for indenters of non-ideal shapes. Nanotechnology, 2003, 14(7):803-808
    [35] Chollacoop N, Dao M, Suresh S.Depth-sensing instrumented indentation with dual sharp indenters. Acta Materialia, 2003, 51(13): 3713-3729
  • 期刊类型引用(2)

    1. 白晓宇,张亚妹,银吉超,王永洪,桑松魁,闫楠. 原状泥岩中模拟动力打桩与浸水静载试验研究. 岩石力学与工程学报. 2023(05): 1287-1300 . 百度学术
    2. 李桂臣,李菁华,孙元田,孙长伦,许嘉徽,荣浩宇,杨森,沃小芳,卢忠诚. 泥岩多尺度模型与水岩作用特性研究进展. 煤炭学报. 2022(03): 1138-1154 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  1555
  • HTML全文浏览量:  256
  • PDF下载量:  123
  • 被引次数: 2
出版历程
  • 收稿日期:  2018-06-27
  • 刊出日期:  2019-05-17

目录

    /

    返回文章
    返回