EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体液滴撞击壁面铺展动力学特性研究

刘海龙 沈学峰 王睿 曹宇 王军锋

刘海龙, 沈学峰, 王睿, 曹宇, 王军锋. 纳米流体液滴撞击壁面铺展动力学特性研究[J]. 力学学报, 2018, 50(5): 1024-1031. doi: 10.6052/0459-1879-18-187
引用本文: 刘海龙, 沈学峰, 王睿, 曹宇, 王军锋. 纳米流体液滴撞击壁面铺展动力学特性研究[J]. 力学学报, 2018, 50(5): 1024-1031. doi: 10.6052/0459-1879-18-187
Liu Hailong, Shen Xuefeng, Wang Rui, Cao Yu, Wang Junfeng. STUDY ON SPREADING CHARACTERISTICS OF NANOFLUIDS DROPLET IMPINGING ON SOLID SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1024-1031. doi: 10.6052/0459-1879-18-187
Citation: Liu Hailong, Shen Xuefeng, Wang Rui, Cao Yu, Wang Junfeng. STUDY ON SPREADING CHARACTERISTICS OF NANOFLUIDS DROPLET IMPINGING ON SOLID SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1024-1031. doi: 10.6052/0459-1879-18-187

纳米流体液滴撞击壁面铺展动力学特性研究

doi: 10.6052/0459-1879-18-187
基金项目: 1)国家自然科学基金(51506078,51761145011)和中国博士后科学基金(2015M581732)资助项目.
详细信息
    作者简介:

    2)王军锋,教授,主要研究方向:荷电多相流理论及工程应用研究.E-mail: wangjunfeng@ujs.edu.cn

    通讯作者:

    王军锋

  • 中图分类号: O359+.1;

STUDY ON SPREADING CHARACTERISTICS OF NANOFLUIDS DROPLET IMPINGING ON SOLID SURFACE

  • 摘要: 纳米流体液滴撞击固体壁面的铺展动力学特性是基于液滴沉积实现高效传热传质过程的关键因素,然而由于纳米流体的非牛顿流变特性及液滴内微流动与纳米颗粒的耦合作用,目前对纳米流体液滴撞击固体壁面的铺展动力学行为缺乏足够的认识.本研究利用了两步法分别配制了分散有3种纳米颗粒的均匀稳定纳米流体(碳纳米管、石墨烯、纳米石墨粉),并对流体的流变特性进行了测量分析.利用显微高速数码摄像技术捕捉了液滴撞击固体壁面的动态过程,通过图像处理技术分析铺展过程中液滴的无量纲高度、铺展因子及动态接触角,探究了液滴在韦伯数约为200及800时撞击壁面后铺展沉积形态的演变规律.研究表明,3种不同纳米颗粒的加入均使基液表现出明显的剪切变稀特性,在液滴撞击壁面的铺展过程中,流体的剪切黏度起重要作用,液滴的无量纲高度和铺展因子的变化幅度随着纳米流体剪切黏度的增大而减小.纳米流体液滴撞击疏水表面时能更快的达到平衡状态,液滴的惯性力主导着液滴的初始铺展阶段,液滴的铺展范围和速度随撞击速度的增大而增大.开展该研究能够为基于液滴沉积的增益冷却技术以及微型高导热及导电材料的制造提供理论依据和技术指导.

     

  • [1] Wang CH, Tsai HL, Wu YC, et al.Investigation of molten metal droplet deposition and solidification for 3D printing techniques. Journal of Micromechanics & Microengineering, 2016, 26(9): 095012
    [2] Moita AS, Herrmann D, Moreira ALN.Fluid dynamic and heat transfer processes between solid surfaces and non-Newtonian liquid droplets. Applied Thermal Engineering, 2015, 88: 33-46
    [3] Wirth W, Storp S, Jacobsen W.Mechanisms controlling leaf retention of agricultural spray solutions. Pest Management Science, 1991, 33(4): 411-420
    [4] Bertola V.An impact regime map for water drops impacting on heated surfaces. International Journal of Heat & Mass Transfer, 2015, 85: 430-437
    [5] Andrade R, Skurtys O, Osorio F.Drop impact behavior on food using spray coating: Fundamentals and applications. Food Research International, 2013, 54(1): 397-405.
    [6] Jiao Z, Li F, Xie L, et al.Experimental research of drop-on-demand droplet jetting 3D printing with molten polymer.Journal of Applied Polymer Science, 2018, 135(9): 45933
    [7] Mogalicherla AK, Lee S, Pfeifer P, et al.Drop-on-demand inkjet printing of alumina nanoparticles in rectangular microchannels. Microfluidics & Nanofluidics, 2014,16(4): 655-666
    [8] Srikar R, Gambaryan-Roisman T, Steffes C, et al.Nanofiber coating of surfaces for intensification of drop or spray impact cooling. International Journal of Heat & Mass Transfer, 2009, 52(25): 5814-5826
    [9] 李春曦, 杨保才, 叶学民. 分离压对波状基底上活性剂液滴铺展过程的影响. 力学学报, 2015, 47(1):71-81
    [9] (Li Chunxi, Yang Baocai, Ye Xuemin.Effect of disjoining pressure on spreading of liquid droplet containing surfactant over corrugated topography surface. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 71-81 (in Chinese))
    [10] 焦云龙, 刘小君, 刘焜. 离散型织构表面液滴的铺展及其接触线的力学特性分析. 力学学报, 2016, 48(2): 353-360
    [10] (Jiao Yunlong, Liu Xiaojun, Liu Kun.Mechanical analysis of a droplet spreading on the discrete textured surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 353-360(in Chinese))
    [11] 王昭, 严红. 基于气液相界面捕捉的统一气体动理学格式. 力学学报, 2018, 50(4): 711-721
    [11] (Wang Zhao, Yan Hong.Unified gas-kinetic scheme for two phase interface capturing. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 711-721 (in Chinese))
    [12] Rioboo R, Marengo M, Tropea C.Outcomes from a Drop Impact on Solid Surfaces. Atomization & Sprays, 2001, 11(2): 155-166
    [13] Josserand C, Thoroddsen ST.Drop impact on a solid surface. Annual Review of Fluid Mechanics, 2017, 48(48): 365-391
    [14] 郭亚丽, 陈桂影, 沈胜强等. 盐水液滴撞击固体壁面接触特性实验研究. 工程热物理学报, 2015, 36(7): 1547-1552
    [14] (Guo Yali, Chen Guiying, Shen Shengqiang, et al.Experimental study of spread characteristics of brine droplets impact on solid surface. Journal of Engineering Thermophysics, 2015, 36(7): 1547-1552 (in Chinese))
    [15] 宋云超, 宁智, 孙春华等. 液滴撞击湿润壁面的运动形态及飞溅运机制. 力学学报, 2013, 45(6): 833-842
    [15] (Song Yunchao, Ning Zhi, Sun Chunhua, et al.Movement and splashing of droplet impact on a wet surface, Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 833-842 (in Chinese))
    [16] 刘冬薇, 宁智, 吕明等. 液滴撞击超疏水壁面反弹及破碎行为研究. 计算力学学报, 2016, 33(1): 106-112
    [16] (Liu Dongwei, Ning Zhi, Lü Ming, et al.Study on the rebound and breakup of the droplet after impacting on the super-hydrophic wall. Chinese Journal of Computational Mechanics, 2016, 33(1): 106-112 (in Chinese))
    [17] Castrejón-Pita JR, Betton ES, Kubiak KJ, et al.The dynamics of the impact and coalescence of droplets on a solid surface. Biomicrofluidics, 2011, 5(1): 14112
    [18] Bergeron V, Bonn D, Martin JY, et al.Controlling droplet deposition with polymer additives. Nature, 2000, 405(6788): 772
    [19] Bergeron V.Designing intelligent fluids for controlling spray applications. Comptes Rendus Physique, 2003, 4(2): 211-219
    [20] Huh HK, Jung S, Seo KW, et al.Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluidics & Nanofluidics, 2015, 18(5-6): 1221-1232
    [21] An S M, Sang Y L.Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Experimental Thermal & Fluid Science, 2012, 38(1): 140-148
    [22] 吴延鹏, 王晓东, 张欣欣. 非牛顿幂律流体液滴铺展特性. 沈阳建筑大学学报(自然科学版), 2008, 24(6): 1060-1065
    [22] (Wu Yanpeng, Wang Xiaodong, Zhang Xinxin.Non-newtonian power law fluid droplet spreading characteristics. Journal of Shenyang Architecture University, 2008, 24(6): 1060-1065 (in Chinese))
    [23] 闵琪, 段远源, 王晓东等. 非牛顿流体液滴铺展过程的格子Boltzmann模拟. 热科学与技术, 2013, 12(4): 335-341
    [23] (Min Qi, Duan Yuanyuan, Wang Xiaodong, et al.Lattice boltzmann simulation of droplet spreading of non-newtonian fluid. Journal of Thermal Science and Technology, 2013,12(4): 335-341 (in Chinese))
    [24] 郭健, 唐正宁. 流体黏弹性对喷墨印刷液滴参数影响. 包装工程, 2014(15): 118-123
    [24] (Guo Jian, Tang Zhengning.Effect of fluid viscoelasticity on droplet parameters of inkjet printing. Packaging Engineering, 2014(15): 118-123 (in Chinese))
    [25] Bartolo D, Boudaoud A, Narcy G, et al.Dynamics of non-Newtonian droplets. Physical Review Letters, 2007, 99(17): 174502
    [26] Biance AL, Clanet C, Quéré D.First steps in the spreading of a liquid droplet. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69(1 Pt 2): 016301
    [27] Rozhkov A, Prunet-Foch B, Vignes-Adler M.Impact of drops of polymer solutions on small targets. Physics of Fluids, 2003, 15(7): 2006-2019
    [28] Zang D, Wang X, Geng X, et al.Impact dynamics of droplets with silica nanoparticles and polymer additives. Soft Matter, 2012, 9(2): 394-400
    [29] Hao C, Zhou Y, Zhou X, et al.Dynamic control of droplet jumping by tailoring nanoparticle concentrations. Applied Physics Letters, 2016, 109(2): 61
    [30] Lee J B, Lee S H.Dynamic wetting and spreading characteristics of a liquid droplet impinging on hydrophobic textured surfaces. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(11): 65-73
    [31] 陈石, 陶英, 沈胜强等. 平壁液滴静态铺展影响因素的研究. 力学学报, 2014, 46(3): 329-335
    [31] (Chen Shi, Tao Ying, Shen Shengqiang, et al.Static spreading of droplet impact on solid surface: Influence factor. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 329-335 (in Chinese))
    [32] Ma AWK, Chinesta F, Mackley MR.The rheology and modeling of chemically treated carbon nanotubes suspensions. Journal of Rheology, 2009, 53(3): 547-57
    [33] Wilamowski BM, Yu H.Improved computation for Levenberg--Marquardt training. IEEE Transactions on Neural Networks, 2010, 21(6): 930-937
    [34] Stalder AF, Kulik G, Sage D, et al.A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 286(1-3): 92-103
  • 加载中
计量
  • 文章访问数:  991
  • HTML全文浏览量:  87
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-05
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回