EI、Scopus 收录
中文核心期刊

基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究

李洋, 桑建兵, 敖日汗, 马钰, 魏新宇

李洋, 桑建兵, 敖日汗, 马钰, 魏新宇. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究[J]. 力学学报, 2021, 53(5): 1449-1456. DOI: 10.6052/0459-1879-21-038
引用本文: 李洋, 桑建兵, 敖日汗, 马钰, 魏新宇. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究[J]. 力学学报, 2021, 53(5): 1449-1456. DOI: 10.6052/0459-1879-21-038
Li Yang, Sang Jianbing, Ao Rihan, Ma Yu, Wei Xinyu. RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456. DOI: 10.6052/0459-1879-21-038
Citation: Li Yang, Sang Jianbing, Ao Rihan, Ma Yu, Wei Xinyu. RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456. DOI: 10.6052/0459-1879-21-038
李洋, 桑建兵, 敖日汗, 马钰, 魏新宇. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究[J]. 力学学报, 2021, 53(5): 1449-1456. CSTR: 32045.14.0459-1879-21-038
引用本文: 李洋, 桑建兵, 敖日汗, 马钰, 魏新宇. 基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究[J]. 力学学报, 2021, 53(5): 1449-1456. CSTR: 32045.14.0459-1879-21-038
Li Yang, Sang Jianbing, Ao Rihan, Ma Yu, Wei Xinyu. RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456. CSTR: 32045.14.0459-1879-21-038
Citation: Li Yang, Sang Jianbing, Ao Rihan, Ma Yu, Wei Xinyu. RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1449-1456. CSTR: 32045.14.0459-1879-21-038

基于仿真和智能算法骨骼肌超弹性本构参数的反演方法研究

基金项目: 1)国家自然科学基金(11832011);河北省自然科学基金(A2020202015)
详细信息
    作者简介:

    2)桑建兵, 教授, 主要研究方向: 工程结构分析与智能算法研究. E-mail: sangjianbing@hebut.edu.cn

    通讯作者:

    桑建兵

  • 中图分类号: Q66

RESEARCH ON INVERSION METHOD OF HYPERELASTIC CONSTITUTIVE PARAMETERS OF SKELETAL MUSCLES BASED ON SIMULATION AND INTELLIGENT ALGORITHM

  • 摘要: 从事高强度的体力工作者经常会发生肌肉软组织的损伤, 因此对骨骼肌的变形特性和应力分布的研究受到了越来越多的重视. 获取正确的本构参数对于生物软组织的力学行为的研究至关重要, 而本构参数的确定本质上是一个逆过程, 具有很大的挑战性. 本文分别采用K近邻(K-nearest neighbor, KNN)模型和支持向量机回归(support vector machine regression, SVR)模型并结合非线性有限元仿真, 提出了两种确定骨骼肌本构参数的反演方法. 首先建立了骨骼肌压缩的有限元模型, 对其压缩条件下的变形特性进行了有限元仿真, 得到了相应的变形特性及应力分布规律, 同时也建立了骨骼肌组织的名义应力和主伸长之间非线性关系的数据集. 其次, 分别利用KNN模型和SVR模型搭建了针对骨骼肌组织进行本构参数反演的机器学习智能算法, 对相应的数据集进行训练, 结合单轴压缩实验的实验数据预测了材料的本构参数. 最后, 对分别基于KNN模型和SVR模型对骨骼肌超弹性本构参数的误差结果进行了分析, 通过引入相关系数$R$和决定系数$R^{2}$对采用两种反演方法的有效性进行数值上的验证. 结果表明, 利用KNN模型和SVR模型结合有限元仿真是确定骨骼肌超弹性本构参数的有效、准确的方法, 该方法也可进一步推广到其他类型的非线性软组织的本构参数反演.
    Abstract: Muscle injury and other diseases often occurs in high-intensity physical workers, so the research on the deformation characteristics and the stress distribution of skeletal muscles are of increasing importance. It is important to obtain the correct constitutive parameters for the study of mechanical behavior of biological soft tissues, and the determination of the constitutive parameters is essentially an inverse process, which possesses challenges. In this paper, two inverse methods based on machine learning are proposed to determine the constitutive parameters, which are k-nearest neighbor (KNN) model and support vector machine regression (SVR) model combined with nonlinear finite element simulation. Firstly, based on the principle of nonlinear mechanics, a finite element model is established to simulate the nonlinear deformation of skeletal muscles under compression, and the corresponding deformation characteristics and stress distribution. At the same time, the dataset of nonlinear relationship between nominal stress and principal stretch of skeletal muscles is established by using the finite element model. Then KNN model and SVR model are used to build the machine learning intelligent algorithms for the inversion of constitutive parameters of skeletal muscle tissues, and the corresponding datasets are trained. Combined with the experimental data of uniaxial compression experiment, the constitutive parameters of skeletal muscles are predicted. Finally, intensive studies also have been carried out to compare the performance of KNN model with SVR model to identify the hyperelastic material parameters of skeletal muscles. And the validity of two inversion methods were verified numerically by introducing the correlation coefficient $(R)$ and the decision coefficient ($R^{2})$. The results show that KNN model and SVR model combined with finite element method are effective and accurate method to identify the hyperelastic material parameters of skeletal muscles. This method can also be further extended for the predictions of constitutive parameters of other types of nonlinear soft materials.
  • [1] Janssen I, Heymsfield SB, Wang Z, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. Journal of Applied Physiology, 2000,89(1):81-88
    [2] Fregly BJ, Besier TF, Lloyd DG, et al. Grand challenge competition to predict in vivo knee loads. Journal of Orthopaedic Research, 2012,30(4):503-513
    [3] Morrow DA, Haut DTL, Odegard GM, et al. Transversely isotropic tensile material properties of skeletal muscle tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2010,3(1):124-129
    [4] Wheatley BB, Odegard GM, Kaufman KR, et al. How does tissue preparation affect skeletal muscle transverse isotropy? Journal of biomechanics, 2016,49(13):3056-3060
    [5] Gras LL, Mitton D, Viot P, et al. Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. Journal of the Mechanical Behavior of Biomedical Materials, 2012,15:131-140
    [6] Van Loocke M, Simms C, Lyons CG. Viscoelastic properties of passive skeletal muscle in compression—Cyclic behaviour. Journal of Biomechanics, 2009,42(8):1038-1048
    [7] Chawla A, Mukherjee S, Karthikeyan B. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Biomechanics and Modeling in Mechanobiology, 2009,8(1):67-76
    [8] Nie X, Cheng J, Chen W, et al. Dynamic tensile response of porcine muscle. Journal of Applied Mechanics, 2011,78(2):1-5
    [9] Wheatley BB, Morrow DA, Odegard GM, et al. Skeletal muscle tensile strain dependence: Hyperviscoelastic nonlinearity. Journal of the Mechanical Behavior of Biomedical Materials, 2016,53:445-454
    [10] 王宝珍, 胡时胜. 猪后腿肌肉的冲击压缩特性实验. 爆炸与冲击, 2010,30(1):33-38

    (Wang Baozhen, Hu Shisheng. Dynamic compression experiments of porcine ham muscle. Explosion and Shock Waves, 2010,30(1):33-38 (in Chinese))

    [11] Mohammadkhah M, Murphy P, Simms C. The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation. Journal of the Mechanical Behavior of Biomedical Materials, 2016,62:468-48
    [12] B?l M, Ehret AE, Leichsenring K, et al. On the anisotropy of skeletal muscle tissue under compression. Acta Biomaterialia, 2014,10(7):3225-3234
    [13] Liu GR, Han X. Computational Inverse Techniques in Nondestructive Evaluation. Boca Raton: CRC Press, 2003
    [14] Takaza M, Moerman KM, Gindre J, et al. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. Journal of the Mechanical Behavior of Biomedical Materials, 2013,17:209-220
    [15] Silva E, Parente MPL, Brand?o S, et al. Characterization of the passive and active material parameters of the pubovisceralis muscle using an inverse numerical method. Journal of Biomechanics, 2018,71(11):100-110
    [16] 何俊, 张彩庆, 李小珍 等. 面向深度学习的多模态融合技术研究综述. 计算机工程, 2020,46(5):1-11

    (He Jun, Zhang Caiqing, Li Xiaozhen, et al. Survey of research on multimodal fusion technology for deep learning. Computer Engineering, 2020,46(5):1-11 (in Chinese))

    [17] 陈燕, 郑军. 基于机器学习理论的数据融合算法对比研究. 贵阳学院学报(自然科学版), 2018,13(3):5-9

    (Chen Yan, Zheng Jun. The comparative research on data fusion algorithm based on machine learning theory. Journal of Guiyang University (Natural Sciences), 2020,37(3):1-8 (in Chinese))

    [18] 张琦, 张荣梅, 陈彬 等. 基于深度学习的医疗影像识别技术研究综述. 河北省科学院学报, 2020,37(3):1-8

    (Zhang Qi, Zhang Rongmei, Chen Bin, et al. Research review of medical image recognition technology based on deep learning. Journal of the Hebei Academy of Sciences, 2020,37(3):1-8 (in Chinese))

    [19] 杨舒涵, 李博, 周丰丰. 基于机器学习的跨患者癫痫自动检测算法. 吉林大学学报(理学版), 2021,59(1):101-106

    (Yang Shuhan, Li Bo, Zhou Fengfeng. Automatic epileptic seizure detection algorithm for non-specific patient based on machine learning. Journal of Jilin University (Science Edition), 2021,59(1):101-106 (in Chinese))

    [20] 赵西增, 徐天宇, 谢玉林 等. 基于卷积神经网络的涵洞式直立堤波浪透射预测. 力学学报, 2021,53(2):330-338

    (Zhao Xizeng, Xu Tianyu, Xie Yulin, et al. Prediction of wave transmission of culvert breakwater based on CNN. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):330-338 (in Chinese))

    [21] 谢晨月, 袁泽龙, 王建春 等. 基于人工神经网络的湍流大涡模拟方法. 力学学报, 2021,53(1):1-16

    (Xie Chenyue, Yuan Zelong, Wang Jianchun, et al. Artificial neural network-based subgrid-scale models for large-eddy simulation of turbulence. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):1-16 (in Chinese))

    [22] 汪运鹏, 杨瑞鑫, 聂少军 等. 基于深度学习技术的激波风洞智能测力系统研究. 力学学报, 2020,52(5):1304-1313

    (Wang Yunpeng, Yang Ruixin, Nie Shaojun, et al. Deep-learning-based intelligent force measurement system using in a shock tunnel. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1304-1313 (in Chinese))

    [23] 覃霞, 刘珊珊, 谌亚菁 等. 基于遗传算法的弹性地基加肋板肋梁无网格优化分析. 力学学报, 2020,52(1):93-110

    (Tan Xia, Liu Shanshan, Chen Yajing, et al. Rib meshless optimization of stiffened plates resting on elastic foundation based on genetic algorithm. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):93-110 (in Chinese))

    [24] 宋明, 李旭阳, 曹宇光 等. 基于BP神经网络与小冲杆试验确定在役管道钢弹塑性性能方法研究. 力学学报, 2020,52(1):82-92

    (Song Ming, Li Xuyang, Cao Yuguang, et al. Determination of elastoplastic properties of in-service pipeline steel based on BP neural network and small punch test. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):82-92 (in Chinese))

    [25] Liang L, Liu M, Martin C, et al. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomechanics and Modeling in Mechanobiology, 2017,16(5):1519-1533
    [26] Lu Y, Pulasani PR, Derakhshani R, et al. Application of neural networks for the prediction of cartilage stress in a musculoskeletal system. Biomedical Signal Processing and Control, 2013,8(6):475-482
    [27] Liu S, Sang J, Zhang Y, et al. An inverse procedure for characterization of material parameters of passive skeletal muscle using FEM and experimental data. Journal of Theoretical and Applied Mechanics, 2020,58(1):247-259
    [28] Koch G, Zemel R, Salakhutdinov R. Siamese neural networks for one-shot image recognition. ICML Deep Learning Workshop, 2015,2:1-27
    [29] Liu GR. FEA-AI and AI-AI: Two-Way deepnets for Real-Time computations for both forward and inverse mechanics problems. International Journal of Computational Methods, 2019,16(8):1950045
    [30] Huh U, Lee CW, You JH, et al. Determination of the material parameters in the Holzapfel-Gasser-Ogden constitutive model for simulation of Age-Dependent material nonlinear behavior for aortic wall tissue under uniaxial Tension. Applied Sciences, 2019,9(14):2851
    [31] Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of the Royal Society Interface, 2006,3(6):15-35
    [32] Sjogaard G, Saltin B. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 1982,243(3):271-280
    [33] Goldberger J, Hinton GE, Roweis S, et al. Neighbourhood components analysis. Advances in Neural Information Processing Systems, 2004,17:513-520
    [34] Colkesen I, Sahin EK, Kavzoglu T. Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences, 2016,118:53-64
    [35] Burges CJC. A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 1998,2(2):121-167
    [36] 王永坚, 胡欢欢, 李品芳. EEMD能量熵和奇异值熵与SVM融合的船用空压机故障诊断. 上海海事大学学报, 2020,41(4):95-102

    (Wang Yongjian, Hu Huanhuan, Li Pinfang. Fault diagnosis for marine air compressors by fusion of EEMD energy entropy and singular value entropy with SVM. Journal of Shanghai Maritime University, 2020,41(4):95-102 (in Chinese))

    [37] Yang L, Qi C, Lin X, et al. Prediction of dynamic increase factor for steel fibre reinforced concrete using a hybrid artificial intelligence model. Engineering Structures, 2019,189:309-318
  • 期刊类型引用(10)

    1. 孙昊,何玲,刘丹. 肌肉组织慢性损伤研究进展. 科技导报. 2024(09): 94-101 . 百度学术
    2. 李烽韬,孙丽芳,陶雅萍,杨鹏,纪猛强,桑建兵. 应用随机森林与神经网络算法的足底软组织本构参数反演方法. 医用生物力学. 2024(03): 476-481 . 百度学术
    3. 陶雅萍,桑建兵,孙丽芳,向华鑫,杨鹏,史玉龙. 数据驱动下人体面部皮肤的本构参数反演及力学特征分析. 力学学报. 2024(07): 1959-1969 . 本站查看
    4. 钱迪鑫,王立人,夏春明. 基于机器学习的GH4169合金Johnson-Cook本构参数反演方法. 机械工程材料. 2024(12): 100-105 . 百度学术
    5. 陈隽,任劼帅,何松,吴泳聪,李劲彬,牛博瑞. 开关柜内部热点温度非接触反演计算研究. 电工电能新技术. 2023(12): 88-96 . 百度学术
    6. 牛斌,郑清丽,赵一凡,高翔,侯添,安美文. 坐姿下不同组织压力性损伤生物力学研究. 医用生物力学. 2023(06): 1079-1085 . 百度学术
    7. 郭建峤,王言冰,田强,任革学,胡海岩. 人体肌骨的多柔体系统动力学研究进展. 力学进展. 2022(02): 253-310 . 百度学术
    8. 梁强,张贤明,李平,李永亮,徐永航. 改进Zerilli-Armstrong、Arrhenius和GWO-BPNN模型对HAl61-4-3-1合金高温流变应力的预测. 材料热处理学报. 2022(09): 193-204 . 百度学术
    9. 魏新宇,桑建兵,张睿琳,王静远,刘宝友. 基于机器学习软骨细胞的时间依赖性力学行为及本构参数反演. 力学学报. 2022(11): 3215-3222 . 本站查看
    10. 段书用,段浩东,韩旭,李昌洛,欧阳衡,李雨乐,刘桂荣. 机器人关节非线性摩擦模型关键参数反求. 力学学报. 2022(11): 3189-3202 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1288
  • HTML全文浏览量:  267
  • PDF下载量:  130
  • 被引次数: 17
出版历程
  • 收稿日期:  2021-01-21
  • 刊出日期:  2021-05-17

目录

    /

    返回文章
    返回