EI、Scopus 收录
中文核心期刊

自由场空泡溃灭过程能量转化机制研究

韩磊, 张敏弟, 黄国豪, 黄彪

韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究[J]. 力学学报, 2021, 53(5): 1288-1301. DOI: 10.6052/0459-1879-21-006
引用本文: 韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究[J]. 力学学报, 2021, 53(5): 1288-1301. DOI: 10.6052/0459-1879-21-006
Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301. DOI: 10.6052/0459-1879-21-006
Citation: Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301. DOI: 10.6052/0459-1879-21-006
韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究[J]. 力学学报, 2021, 53(5): 1288-1301. CSTR: 32045.14.0459-1879-21-006
引用本文: 韩磊, 张敏弟, 黄国豪, 黄彪. 自由场空泡溃灭过程能量转化机制研究[J]. 力学学报, 2021, 53(5): 1288-1301. CSTR: 32045.14.0459-1879-21-006
Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301. CSTR: 32045.14.0459-1879-21-006
Citation: Han Lei, Zhang Mindi, Huang Guohao, Huang Biao. ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1288-1301. CSTR: 32045.14.0459-1879-21-006

自由场空泡溃灭过程能量转化机制研究

基金项目: 1)国家自然科学基金(51979003);国家自然科学基金(52079004);北京市自然科学基金(3212023)
详细信息
    作者简介:

    2)张敏弟, 副教授, 主要研究方向: 空化流体动力学. E-mail:zhangmindi@bit.edu.cn;

    通讯作者:

    张敏弟

    黄彪

  • 中图分类号: O352

ENERGY TRANSFORMATION MECHANISM OF A GAS BUBBLE COLLAPSE IN THE FREE-FIELD

  • 摘要: 综合应用实验与数值模拟方法, 深入讨论了自由场空泡溃灭过程中的能量转化机制. 在实验研究中, 应用纹影法记录了空泡溃灭的演变过程, 提取了空泡在溃灭过程中的半径, 溃灭速度等数据, 结合空泡势能和动能方程, 描述了空泡能量的转化过程. 在开展数值模拟分析时, 运用弱可压缩流体质量守恒方程和动量方程, 建立了三维数值模型用以模拟空泡在自由场中的溃灭过程, 并且由结果中获取了空泡溃灭过程中的压力及速度变化规律, 揭示了空泡在溃灭过程中能量转化机制. 研究结果表明: (1) 自由场空泡在溃灭过程中, 空泡势能与空泡半径具有相同的演化趋势, 空泡动能与势能变化趋势相反; 当空泡达到最大半径处时, 空泡势能最大, 流场动能为零. (2) 溃灭后期在空泡周围会形成高压区域, 该区域的压力梯度与速度梯度较高, 随着空泡收缩, 高压区域面积逐渐减小. (3) 空泡在自由场中发生溃灭时, 空泡势能不断转化为流场动能, 在溃灭时刻可以明显观察到冲击波现象, 空泡的大部分能量会在此时转化为冲击波的波能.
    Abstract: Both the experiment method and numerical simulation method are applied in this paper to investigate the energy transformation mechanism of a gas bubble collapseing in the free field. The bubble radius, velocity and acceleration of the bubble evolution process are obtained according to the experimental results via the schlieren method. These parameters are substituted~into the bubble potential energy and kinetic energy equation to explain the energy changing. By using the CFD simulation method, a three-dimensional model with reformulated mass conservation equation and momentum equation considering the weakly compressibility, is introduced to discuss the bubble collapse process. The pressure and velocity distribution around the bubble are extracted from the simulation results in order to analyze the energy transformation mechanism. The results show that (i) the relation between the potential energy and bubble radius maintains the positive correlation, with the increasing of the potential energy, the kinetic energy decreases significantly. The value of potential energy is maximum at the end of the bubble expanding, and the kinetic energy of free field returns to zero at the same time. (ii) During the shrinking stage, a high-pressure area appears around the bubble, and gradients of velocity and pressure are higher than the other area in the free field. The high-pressure area is shrinking gradually when the bubble is collapsing. (iii) The potential energy transforms into kinetic energy during the whole process of the bubble evolution, and the kinetic energy is form of wave energy. A shock wave is captured when the bubble collapse, and the most of bubble energy transform into wave energy of the shock wave at this time.
  • [1] Huang B, Young YL, Wang GY, et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation. Journal of Fluids Engineering, 2013,135(7):071301
    [2] Callenaere M, Franc JP, Michel JM, et al. The cavitation instability induced by the development of a re-entrant jet. Journal of Fluid Mechanics, 2001,444:223-256
    [3] Ma XJ, Huang B, Zhao X, et al. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrasonics Sonochemistry, 2018,43:80-90
    [4] Tiwari A, Pantano C, Freund JB. Growth-and-collapse dynamics of small bubble clusters near a wall. Journal of Fluid Mechanics, 2015,775:1-23
    [5] Rayleigh L, On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag, 1917,34(200):94-98
    [6] Koukouvinis P, Gavaises M, Supponen O, et al. Simulation of bubble expansion and collapse in the vicinity of a free surface. Physics of Fluids, 2016,28(5):052103
    [7] Beig SA, Aboulhasanzadeh B, Johnsen E, Temperatures produced by inertially collapsing bubbles near rigid surfaces. Journal of Fluid Mechanics, 2018,852:105-125
    [8] Cao S, Wang G, Coutier-Delgosha O, et al. Shock-induced bubble collapse near solid materials: Effect of acoustic impedance. Journal of Fluid Mechanics, 2020,907
    [9] Tian ZL, Liu YL, Zhang AM, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method. Ocean Engineering, 2020, 196(Jan.15): 106714.1-106714.12
    [10] Fu L, Wang S, Xin J, et al. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser. Optics Express, 2018,26(22):28560
    [11] Plesset MS. On the stability of fluid flows with spherical symmetry. Journal of Applied Physics, 1954,25(1):96-98
    [12] Ma XJ, Huang B, Wang GY, et al. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field. Ultrasonics Sonochemistry, 2017,34:164-172
    [13] Zhang AM, Wu WB, Liu YL, et al. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model. Physics of Fluids, 2017,29(8):082111
    [14] Huang GH, Zhang MD, Ma XJ, et al. Dynamic behavior of a single bubble between the free surface and rigid wall. Ultrasonics Sonochemistry, 2020,67:105147
    [15] Orthaber U, Zevnik J, Petkovek R, et al. Cavitation bubble collapse in a vicinity of a liquid-liquid interface — Basic research into emulsification process. Ultrasonics Sonochemistry, 2020,68:105224
    [16] Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. Journal of Fluid Mechanics, 1989,206:299-338
    [17] Johnsen E, Colonius T. Numerical simulations of non-spherical bubble collapse. Journal of Fluid Mechanics, 2009,629(629):231-262
    [18] Li FZ, Fan HY, Guo YQ, et al. Water-Jet cavitation shock bulging as novel microforming technique. Chinese Journal of Mechanical Engineering, 2021,34(1):4
    [19] Ohl CD, Kurz T, Geisler R, et al. Bubble dynamics, shock waves and sonoluminescence. Philosophical Transactions of the Royal Society A, 1999,357(1751):269-294
    [20] Supponen O, Obreschkow D, Kobel P, et al. Shock waves from non-spherical cavitation bubbles//Meeting of the Aps Division of Fluid Dynamics. American Physical Society, 2017
    [21] Franc JP, Riondet M, Karimi A, et al. Impact load measurements in an erosive cavitating flow. Journal of Fluids Engineering, 2011,133(12):121301
    [22] Klaseboer E, Fong SW, Turangan CK, et al. Interaction of lithotripter shockwaves with single inertial cavitation bubbles. Journal of Fluid Mechanics, 2007,593(593):33-56
    [23] Fortes-Patella R, Challier G, Reboud JL, et al. Energy balance in cavitation erosion: From bubble collapse to indentation of material surface. Journal of Fluids Engineering, 2013,135(1):011303
    [24] Cui P, Zhang AM, Wang S, et al. Ice breaking by a collapsing bubble. Journal of Fluid Mechanics, 2018,841:287-309
    [25] Long J, Eliceiri MH, Wang L, et al. Capturing the final stage of the collapse of cavitation bubbles generated during nanosecond laser ablation of submerged targets. Optics & Laser Technology, 2021,134:106647
    [26] Sagar HJ, Moctar OE. Dynamics of a cavitation bubble near a solid surface and the induced damage. Journal of Fluids and Structures, 2020,92:102799
    [27] Liu Z, Guan X, Zhang L, et al. Investigations of dynamics of a single spark-induced bubble in saline water. Journal of Physics D$:$ Applied Physics, 2020,54(7):075203
    [28] Plesset MS. The dynamics of cavitation bubbles. Journal of Applied Mechanics, 1949,16:277-282
    [29] Khoroshev GA. Collapse of vapor-air cavitation bubbles (Collapse of single spherical vapor-air cavitation bubble, computing bubble movement and pressure as function of air content). Soviet Physics-Acoustics, 1964,9:275-279
    [30] Neppiras EA, Noltingk BE. Cavitation produced by ultrasonics: theoretical conditions for the onset of cavitation. Proceedings of the Physical Society. Section B, 1951,64(12):1032
    [31] Apfel RE. Acoustic cavitation. Methods in experimental physics. Academic Press, 1981,19:355-411
    [32] Gaudron R, Warnez MT, et al. Bubble dynamics in a viscoelastic medium with nonlinear elasticity. Journal of Fluid Mechanics, 2015,766:54-75
    [33] Fujikawa S, Akamatsu T. Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 1980,97(3):481-512
    [34] Beig SA, Aboulhasanzadeh B, Johnsen E. Temperatures produced by inertially collapsing bubbles near rigid surfaces. Journal of Fluid Mechanics, 2018,852:105-125
    [35] Pineda S, Marongiu JC, Aubert S, et al. Simulation of a gas bubble compression in water near a wall using the SPH-ALE method. Computers & Fluids, 2018,179:459-475
    [36] Morenko IV. Numerical simulation of the propagation of pressure waves in water during the collapse of a spherical air cavity. Ocean Engineering, 2020,215:107905
    [37] Tian ZL, Liu YL, Zhang AM, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method. Ocean Engineering, 2020,196:106714
    [38] Fortes Patella R, Reboud JL. A new approach to evaluate the cavitation erosion power. Journal of Fluids Engineering, 1998,120(2):335-344
    [39] Schenke S, Melissaris T, Terwisga T. On the relevance of kinematics for cavitation implosion loads. Physics of Fluids, 2019,31(5):052102
    [40] Zhang J, Zhang L, Deng J. Numerical study of the collapse of multiple bubbles and the energy conversion during bubble collapse. Water, 2019,11(2):w11020247
    [41] 季斌, 程怀玉, 黄彪  等. 空化水动力学非定常特性研究进展及展望. 力学进展, 2019,49:201906

    (Ji Bin, Cheng Huaiyu, Huang Biao , et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation. Advances in Mechanics, 2019,49:201906 (in Chinese))

    [42] 姚熊亮, 刘文韬, 张阿漫  等. 水下爆炸气泡及其对结构毁伤研究综述. 中国舰船研究, 2016,11(1):36-45

    (Yao Xiongliang, Liu Wentao, Zhang Aman , et al. Review of the research on underwater explosion bubbles and the corresponding structural damage. Chinese Journal of Ship Research, 2016,11(1):36-45 (in Chinese))

    [43] 张凌新, 张靖, 邵雪明 . 空泡溃灭过程中的压力波能分析. 空气动力学学报, 2020,38(4):807-813

    (Zhang Lingxin, Zhang Jing, Shao Xueming . The analysis of pressure wave energy during the collapse of cavitation bubble. Acta Aerodynamica Sinica, 2020,38(4):807-813 (in Chinese))

    [44] Kataoka I. Local instant formulation of two-phase flow. International Journal of Multiphase Flow, 1986,12(5):745-758
    [45] Caltagirone JP, Vincent S, Caruyer C. A multiphase compressible model for the simulation of multiphase flows. Computers & Fluids, 2011,50(1):24-34
    [46] Zhang MD, Chang Q, Ma XJ, et al. Physical investigation of the counterjet dynamics during the bubble rebound. Ultrasonics Sonochemistry, 2019,58:104706
    [47] Johnsen E. Numerical simulations of non-spherical bubble collapse: With applications to shockwave lithotripsy. California Institute of Technology, 2008
    [48] Qiu SC, Ma XJ, Huang B, et al. Numerical simulation of single bubble dynamics under acoustic standing waves. Ultrasonics Sonochemistry, 2018: S1350417718308058
    [49] Orimi HE, Narayanswamy S, Boutopoulos C. Hybrid analytical/numerical modeling of nanosecond laser-induced micro-jets generated by liquid confining devices. Journal of Fluids and Structures, 2020,98:103079
    [50] Choi J, Ceccio SL. Dynamics and noise emission of vortex cavitation bubbles. Journal of Fluid Mechanics, 2007,575(575):1-26
    [51] Melissaris T, Schenke S, Bulten N, et al. On the accuracy of predicting cavitation impact loads on marine propellers. Wear, 2020,456:203393
    [52] Mauger C, Méès L, Michard M, et al, Schlieren and interferometry in a 2D cavitating channel flow. Exp. Fluids, 2012,53:1895-1913
    [53] Panda J, Seasholtz RG. Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. Journal of Fluid Mechanics, 2002,450:97-130
    [54] Huang G, Zhang MD, Han L, et al. Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble. Ultrasonics Sonochemistry, 2020: 105440
    [55] 张佳悦, 李达钦, 吴钦  等. 航行体回收垂直入水空泡流场及水动力特性研究. 力学学报, 2019,51(3):803-812

    (Zhang Jiayue, Li Daqin, Wu Qin , et al. Numerical investigation on cavity structures and hyrodynamics of the vehicle during vertical water-entry. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):803-812 (in Chinese))

    [56] 郭文璐, 李泓辰, 王静竹  等. 单空泡与自由液面相互作用规律研究进展. 力学学报, 2019,51(6):1682-1698

    (Guo Wenlu, Li Hongchen, Wang Jingzhu , et al. Reaserch progress on interaction between a single cavitation and free surface. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1682-1698 (in Chinese))

    [57] 王悦柔, 王军锋, 刘海龙 . 电场作用下气泡上升行为特性的数值计算研究. 力学学报, 2020,52(1):31-39

    (Wang Yuerou, Wang Junfeng, Liu Hailong . Numerical simulation on bubble rinsing behaviors under electric field. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):31-39 (in Chinese))

  • 期刊类型引用(6)

    1. 徐倩倩,陈婷. 泡粒距离对颗粒附近空泡溃灭射流的影响研究. 节能. 2024(01): 59-62 . 百度学术
    2. 丁清苗,李小曼,崔艳雨,李文斌,成斌. 基于单泡溃灭能量转化理论的空化实验研究进展. 科学技术与工程. 2024(15): 6125-6133 . 百度学术
    3. 翟俨伟,刘志武,李健薄. 弹性边界附近空化泡迁移和周期特性试验研究. 水利水电技术(中英文). 2022(03): 91-109 . 百度学术
    4. 王宁,周领,李赟杰,潘天文. 黏弹性管道水柱分离弥合水锤有限体积法模型. 力学学报. 2022(07): 1952-1959 . 本站查看
    5. 陈家成,陈泰然,韩磊,耿昊,谭树林. 自由场中液氮单空泡动力学特性的实验研究. 力学学报. 2022(09): 2387-2400 . 本站查看
    6. 贾蕙竹,丁婷. 基于改进的Keller-Miksis模型的超声空化气泡动力学研究. 中国医疗设备. 2022(11): 28-33 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1238
  • HTML全文浏览量:  197
  • PDF下载量:  223
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-01-04
  • 刊出日期:  2021-05-17

目录

    /

    返回文章
    返回