EI、Scopus 收录
中文核心期刊

层状分数阶黏弹性饱和地基与梁共同作用的时效研究

艾智勇, 王禾, 慕金晶

艾智勇, 王禾, 慕金晶. 层状分数阶黏弹性饱和地基与梁共同作用的时效研究[J]. 力学学报, 2021, 53(5): 1402-1411. DOI: 10.6052/0459-1879-20-447
引用本文: 艾智勇, 王禾, 慕金晶. 层状分数阶黏弹性饱和地基与梁共同作用的时效研究[J]. 力学学报, 2021, 53(5): 1402-1411. DOI: 10.6052/0459-1879-20-447
Ai Zhiyong, Wang He, Mu Jinjing. TIME-DEPENDENT ANALYSIS OF THE INTERACTION BETWEEN MULTILAYERED FRACTIONAL VISCOELASTIC SATURATED SOILS AND BEAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1402-1411. DOI: 10.6052/0459-1879-20-447
Citation: Ai Zhiyong, Wang He, Mu Jinjing. TIME-DEPENDENT ANALYSIS OF THE INTERACTION BETWEEN MULTILAYERED FRACTIONAL VISCOELASTIC SATURATED SOILS AND BEAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1402-1411. DOI: 10.6052/0459-1879-20-447
艾智勇, 王禾, 慕金晶. 层状分数阶黏弹性饱和地基与梁共同作用的时效研究[J]. 力学学报, 2021, 53(5): 1402-1411. CSTR: 32045.14.0459-1879-20-447
引用本文: 艾智勇, 王禾, 慕金晶. 层状分数阶黏弹性饱和地基与梁共同作用的时效研究[J]. 力学学报, 2021, 53(5): 1402-1411. CSTR: 32045.14.0459-1879-20-447
Ai Zhiyong, Wang He, Mu Jinjing. TIME-DEPENDENT ANALYSIS OF THE INTERACTION BETWEEN MULTILAYERED FRACTIONAL VISCOELASTIC SATURATED SOILS AND BEAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1402-1411. CSTR: 32045.14.0459-1879-20-447
Citation: Ai Zhiyong, Wang He, Mu Jinjing. TIME-DEPENDENT ANALYSIS OF THE INTERACTION BETWEEN MULTILAYERED FRACTIONAL VISCOELASTIC SATURATED SOILS AND BEAMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1402-1411. CSTR: 32045.14.0459-1879-20-447

层状分数阶黏弹性饱和地基与梁共同作用的时效研究

基金项目: 1)国家自然科学基金(41672275)
详细信息
    作者简介:

    2)艾智勇, 教授, 主要研究方向: 岩土及地下工程. E-mail: zhiyongai@tongji.edu.cn

    通讯作者:

    艾智勇

  • 中图分类号: TU470

TIME-DEPENDENT ANALYSIS OF THE INTERACTION BETWEEN MULTILAYERED FRACTIONAL VISCOELASTIC SATURATED SOILS AND BEAMS

  • 摘要: 饱和地基与梁共同作用问题的研究在力学领域及工程界都具有重要意义. 采用分数阶Merchant模型研究饱和地基的流变固结, 该模型比常用整数阶黏弹性模型更能精确反映地基的时变特征. 基于层状正交各向异性黏弹性饱和地基的固结解答, 采用有限元法与边界元法耦合的方法, 研究梁与分数阶黏弹性饱和地基的共同作用问题. 依据Timoshenko梁理论将梁离散为若干单元, 进而得到梁的总刚度矩阵方程; 将黏弹性地基固结问题的精细积分解答作为边界积分的核函数, 采用边界元法建立地基柔度矩阵方程; 结合梁与地基接触面的位移协调条件以及力的平衡条件, 通过有限元法与边界元法的耦合, 最终求得层状分数阶黏弹性饱和地基与Timoshenko梁共同作用的解答. 将本文地基退化为Kelvin地基进行计算, 并与已有文献中的算例进行对比, 二者具有很好的一致性. 在此基础上, 探讨分数阶次和地基成层性对梁与黏弹性饱和地基共同作用的影响. 结果表明: 分数阶次高的黏弹性饱和地基的固结速率明显更快; 对于层状地基, 加固表层土体能有效控制地基整体沉降, 并减小差异沉降. 实际工程中, 应充分考虑饱和地基流变及土体分层性的影响, 以准确分析梁与地基的共同作用过程.
    Abstract: The study of the interaction between beams and saturated soils is of great significance in both mechanics and engineering fields. In this paper, the fractional Merchant model is adopted to solve the rheological consolidation of saturated soils, which can simulate the time-depending characteristics of the soils more accurately than the common integer order viscoelastic models. Based on the solution of consolidation for multilayered cross-anisotropic viscoelastic saturated soils, the finite element method (FEM) and the boundary element method (BEM) are coupled to investigate the interaction between beams and fractional viscoelastic saturated soils. The beam is discretized into a number of elements according to the Timoshenko beam theory, and then the global stiffness matrix equation of the beam is obtained. The precise integration solution of the viscoelastic soils is considered as the kernel function of the boundary integral, and the flexibility matrix equation of soils is established by the BEM. Finally, by coupling the FEM and the BEM, the solution of the interaction between multilayered fractional viscoelastic saturated soils and the Timoshenko beam is derived by introducing the displacement coordination condition and equilibrium condition for forces between them. The soil model adopted in this study is degenerated into the Kelvin model, and the results obtained are compared with those in the existing literature, which shows a good consistency. On this basis, the effects of the fractional order and stratification of soils on the interaction between beams and viscoelastic soils are discussed. Numerical results show that: the consolidation velocity of viscoelastic saturated soils with higher fractional order is obviously faster; for layered soils, the reinforcement of topsoil can effectively control the ground settlement and reduce the differential settlement. In practical engineering, the effects of rheology of saturated soils and soil stratification should be well considered to analyze the interaction between beams and soils more accurately.
  • [1] Hetenyi M. Beams on Elastic Foundation: Theory With Applications in the Fields of Civil and Mechanical Engineering. Ann Arbor: University of Michigan Press, 1946
    [2] 张季容, 姚祖恩, 楼文娟. 有限单元法计算分层地基上的弹性地基梁. 岩土工程学报, 1986,8(3):16-26

    (Zhang Jirong, Yao Zu'en, Lou Wenjuan. Computation of a beam on multilayer foundation using finite element method. Chinese Journal of Geotechnical Engineering, 1986,8(3):16-26 (in Chinese))

    [3] Tullini N, Tralli A. Static analysis of Timoshenko beam resting on elastic half-plane based on the coupling of locking-free finite elements and boundary integral. Computational Mechanics, 2010,45(2-3):211-225
    [4] 夏桂云, 李传习, 张建仁. 考虑水平摩阻和双重剪切的弹性地基梁分析. 土木工程学报, 2011,44(12):93-100

    (Xia Guiyun, Li Chuanxi, Zhang Jianren. Elastic foundation beam analysis with horizontal friction and double shear effects. China Civil Engineering Journal, 2011,44(12):93-100 (in Chinese))

    [5] Ai ZY, Li ZX, Cheng YC. BEM analysis of elastic foundation beams on multilayered isotropic soils. Soils and Foundations, 2014,54(4):667-674
    [6] 李潇, 王宏志, 李世萍 等. 解析型Winkler弹性地基梁单元构造. 工程力学, 2015,32(3):66-72

    (Li Xiao, Wang Hongzhi, Li Shiping, et al. Element for beam on winkler elastic foundation based on analytical trial functions. Engineering Mechanics, 2015,32(3):66-72 (in Chinese))

    [7] Zhang Y, Liu XM. Response of an infinite beam resting on the tensionless Winkler foundation subjected to an axial and a transverse concentrated loads. European Journal of Mechanics A-Solids, 2019,77:103819
    [8] Akhazhanov S, Omarbekova N, Mergenbekova A, et al. Analytical solution of beams on elastic foundation. International Journal of Geomate, 2020,19(73):193-200
    [9] Liang LJ, Xu CJ, Zhu BT, et al. Theoretical method for an elastic infinite beam resting on a deformable foundation with a local subsidence. Computers and Geotechnics, 2020,127:103740
    [10] McNamee J, Gibson RE. Plane strain and axially symmetric problem of the consolidation of a semi-infinite clay stratum. Quarterly Journal of Mechanics and Applied Mathematics, 1960,13(2):210-227
    [11] Booker JR. The consolidation of a finite layer subject to surface loading. International Journal of Solids and Structures, 1974,10(9):1053-1065
    [12] Rajapakse RKND, Senjuntichai T. Fundamental solutions for a poroelastic half-space with compressible constituents. Journal of Applied Mechanics, 1993,60(4):844-856
    [13] 方诗圣, 王建国, 王秀喜. 层状饱和土Biot固结问题状态空间法. 力学学报, 2003,35(2):206-212

    (Fang Shisheng, Wang Jianguo, Wang Xiuxi. The static space method of the Biot consolidation problem for multilayered porous media. Chinese Journal of Theoretical and Applied Mechanics, 2003,35(2):206-212 (in Chinese))

    [14] 陈少林, 柯小飞, 张洪翔. 海洋地震工程流固耦合问题统一计算框架. 力学学报, 2019,51(2):594-606

    (Chen Shaolin, Ke Xiaofei, Zhang Hongxiang. A unified computational framework for fluid-solid coupling in marine earthquake engineering. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):594-606 (in Chinese))

    [15] 熊春宝, 胡倩倩, 郭颖. 孔隙率各向异性下饱和多孔弹性地基动力响应. 力学学报, 2020,52(4):1120-1130

    (Xiong Chunbao, Hu Qianqian, Guo Ying. Dynamic response of saturated porous elastic foundation under porosity anisotropy. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1120-1130 (in Chinese))

    [16] 王立安, 赵建昌, 杨华中. 饱和多孔地基与矩形板动力相互作用的非轴对称混合边值问题. 力学学报, 2020,52(4):1189-1198

    (Wang Li'an, Zhao Jianchang, Yang Huazhong. Non-axisymmetric mixed boundary value problem for dynamic interaction between saturated porous foundation and rectangular plate. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1189-1198 (in Chinese))

    [17] 陈宗基, 刘恢先. 黏土层沉陷(由于固结和次时间效应)的二维问题. 力学学报, 1958,2(1):1-10

    (Chen Zongji, Liu Huixian. Two dimensional problems of settlements of clay layers due to consolidation and secondary time effects. Chinese Journal of Theoretical and Applied Mechanics, 1958,2(1):1-10 (in Chinese))

    [18] 李传亮, 杜志敏, 孔祥言 等. 多孔介质的流变模型研究. 力学学报, 2003(2):230-234

    (Li Chuanliang, Du Zhimin, Kong Xiangyan, et al. A study on the rheological model of porous media. Chinese Journal of Theoretical and Applied Mechanics, 2003(2):230-234 (in Chinese))

    [19] Gemant A. A method of analyzing experimental results obtained from elasto-viscous bodies. Physics, 1936,7(8):311-317
    [20] 何利军, 孔令伟, 吴文军 等. 采用分数阶导数描述软黏土蠕变的模型. 岩土力学, 2011,32(S2):239-243

    (He Lijun, Kong Lingwei, Wu Wenjun, et al. A description of creep model for soft soil with fractional derivative. Rock and Soil Mechanics, 2011,32(S2):239-243 (in Chinese))

    [21] Zhu HH, Liu LC, Pei HF, et al. Settlement analysis of viscoelastic foundation under vertical line load using a fractional Kelvin--Voigt model. Geomechanics and Engineering, 2012,4(1):67-78
    [22] Yin DS, Wu H, Cheng C, et al. Fractional order constitutive model of geomaterials under the condition of triaxial test. International Journal for Numerical and Analytical Methods in Geomechanics, 2013,37:961-972
    [23] 刘忠玉, 杨强. 基于分数阶Kelvin模型的饱和黏土一维流变固结分析. 岩土力学, 2017,38(12):3680-3687, 3697

    (Liu Zhongyu, Yang Qiang. One-dimensional rheological consolidation analysis of saturated clay using fractional order Kelvin's model. Rock and Soil Mechanics, 2017,38(12):3680-3687, 3697 (in Chinese))

    [24] Ai ZY, Zhao YZ, Liu WJ. Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media. Computers & Mathematics with Applications, 2020,79(5):1321-1334
    [25] 解益, 李培超, 汪磊 等. 分数阶导数黏弹性饱和土体一维固结半解析解. 岩土力学, 2017,38(11):3240-3246

    (Xie Yi, Li Peichao, Wang Lei, et al. Semi-analytical solution for one-dimensional consolidation of viscoelastic saturated soil with fractional order derivative. Rock and Soil Mechanics, 2017,38(11):3240-3246 (in Chinese))

    [26] 汪磊, 孙德安, 解益 等. 任意载荷下分数阶导数黏弹性饱和土体一维固结. 岩土工程学报, 2017,39(10):1823-1831

    (Wang Lei, Sun De'an, Xie Yi, et al. One-dimensional consolidation of fractional order derivative viscoelastic saturated soils under arbitrary loading. Chinese Journal of Geotechnical Engineering, 2017,39(10):1823-1831 (in Chinese))

    [27] 时刚, 李永辉, 刘忠玉. 基于分数阶流变模型的饱和软土一维流变固结. 地下空间与工程学报, 2019,15(5):1402-1409, 1416

    (Shi Gang, Li Yonghui, Liu Zhongyu. One-dimensional rheological consolidation of soft clay based on fractional order derivative rheological model. Chinese Journal of Underground Space and Engineering, 2019,15(5):1402-1409, 1416 (in Chinese))

    [28] 刘忠玉, 崔鹏陆, 郑占垒 等. 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析. 岩土力学, 2019,40(6):2029-2038

    (Liu Zhongyu, Cui Penglu, Zheng Zhanlei, et al. Analysis of one-dimensional rheological consolidation with flow described by non-Newtonian index and fractional-order Merchant's model. Rock and Soil Mechanics, 2019,40(6):2029-2038 (in Chinese))

    [29] 王珏, 童立红, 金立 等. 任意载荷下连续排水边界分数阶黏弹性地基一维固结模型. 土木与环境工程学报, 2020,42(1):56-63

    (Wang Jue, Tong Lihong, Jin Li, et al. One-dimension consolidation of fractional order derivative viscoelastic subgrade with continuous drainage boundary under time-dependent loading. Journal of Civil and Environmental Engineering, 2020,42(1):56-63 (in Chinese))

    [30] 吴奎, 邵珠山, 秦溯. 流变岩体中让压支护作用下隧道力学行为研究. 力学学报, 2020,52(3):890-900

    (Wu Kui, Shao Zhushan, Qin Su. Investigation on the mechanical behavior of tunnel supported by yielding supports in rheological rocks. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):890-900 (in Chinese))

    [31] Ai ZY, Hu YD. The analysis of beams on layered poroelastic soils with anisotropic permeability and compressible pore fluid. Applied Mathematical Modelling, 2016,40(11-12):5876-5890
    [32] Kobayashi H, Sonoda K. Timoshenko beams on linear viscoelastic foundations. Journal of Geotechnical Engineering ASCE, 1983,109(6):832-844
    [33] 苏超, 姜弘道, 谭恩会. 黏弹性基础梁计算方法及其应用. 河海大学学报(自然科学版), 2000,28(5):101-105

    (Su Chao, Jiang Hongdao, Tan Enhui. Computation method and application to viscoelastical foundation beam. Journal of Hohai University, 2000,28(5):101-105 (in Chinese))

    [34] Bhattiprolu U, Bajaj AK, Davies P. An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: Static response. International Journal of Solids and Structures, 2013,50(14-15):2328-2339
    [35] Sreekantan PG, Basudhar PK. Flexural response of beams on viscoelastic foundations with predictions beyond the loading area. International Journal of Geotechnical Engineering, 2020,14(4):442-451
    [36] Ai ZY, Gui JC, Mu JJ. 3-D time-dependent analysis of multilayered cross-anisotropic saturated soils based on the fractional viscoelastic model. Applied Mathematical Modelling, 2019,76:172-192
    [37] 夏桂云, 李传习. 考虑剪切变形影响的杆系结构理论与应用. 北京: 人民交通出版社, 2008

    (Xia Guiyun, Li Chuanxi. Theory and Application of Frame Structures Considering Shear Deformation. Beijing: China Communications Press, 2008 (in Chinese))

    [38] 李星. 积分方程. 北京: 科学出版社, 2008

    (Li Xing. Integral Equation. Beijing: Science Press, 2008 (in Chinese))

    [39] Vesic AS. Beams on elastic subgrade and the Winkler's hypothesis// Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1961: 845-850
  • 期刊类型引用(4)

    1. 马维力,崔辉如,申柳雷,王诗琦,彭帆,李显方. 双参数弹性基功能梯度圆柱管自由振动的高阶梁理论解. 国防科技大学学报. 2024(04): 86-95 . 百度学术
    2. 钟岱辉,史晓洁. 岩土动力问题数值分析中人工边界研究进展. 山东建筑大学学报. 2023(01): 102-110 . 百度学术
    3. 杨华中,赵建昌,余云燕,王立安. 流变性土排桩地基的禁振带隙. 浙江大学学报(工学版). 2023(07): 1410-1417 . 百度学术
    4. 殷凯琳,欧志英. 轴向运动分数阶粘弹性梁的动力学模型及振动问题研究. 黑龙江科学. 2023(18): 48-51+55 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1131
  • HTML全文浏览量:  201
  • PDF下载量:  114
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-12-22
  • 刊出日期:  2021-05-17

目录

    /

    返回文章
    返回