EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于WENO-THINC/WLIC模型的水气二相流数值模拟

韦志龙 蒋勤

韦志龙, 蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟[J]. 力学学报, 2021, 53(4): 973-985. doi: 10.6052/0459-1879-20-430
引用本文: 韦志龙, 蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟[J]. 力学学报, 2021, 53(4): 973-985. doi: 10.6052/0459-1879-20-430
Wei Zhilong, Jiang Qin. NUMERICAL STUDY ON WATER-AIR TWO-PHASE FLOW BASED ON WENO-THINC/WLIC MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985. doi: 10.6052/0459-1879-20-430
Citation: Wei Zhilong, Jiang Qin. NUMERICAL STUDY ON WATER-AIR TWO-PHASE FLOW BASED ON WENO-THINC/WLIC MODEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 973-985. doi: 10.6052/0459-1879-20-430

基于WENO-THINC/WLIC模型的水气二相流数值模拟

doi: 10.6052/0459-1879-20-430
基金项目: 1)国家重点研发计划(2018YFC0407501)
详细信息
    作者简介:

    2)蒋勤, 教授, 主要研究方向: 河口海岸水动力与泥沙运动, 多相流与大变形自由表面流运动模拟. E-mail: qjiang@hhu.edu.cn

    通讯作者:

    蒋勤

  • 中图分类号: O359+.1

NUMERICAL STUDY ON WATER-AIR TWO-PHASE FLOW BASED ON WENO-THINC/WLIC MODEL

  • 摘要: 水气二相流与诸多领域的实际工程问题密切相关. 对二相流运动进行高精度的数值模拟是计算流体力学研究的难点和热点. 针对开敞水域的自由表面流运动问题, 将水和空气均视为不可压缩流体, 采用五阶加权基本无震荡(weighted essentially non-oscillatory, WENO)格式求解描述流体运动的纳维斯托克斯(Navier-Stokes, NS)方程, 利用以加权线性界面算法改进的多维双曲正切函数界面捕捉法(tangent of hyperbola for interface capturing with weighed line interface calculation, THINC/WLIC)追踪水气界面, 建立WENO-THINC/WLIC水气二相流运动数值模型. 模型采用分步计算法离散求解控制方程, 通过压力投影法求解压强场, 并利用三阶总变差递减(total variation diminishing, TVD)龙格库塔(Runge-Kutta, RK)法对时间项进行离散求解. 通过对环境速度场下Zalesak's disk和shearing vortex界面运动问题, 线性液舱晃荡问题以及溃坝问题的模拟结果与理论分析或试验结果的比较, 对所建立的水气二相流数值模型的适用性及模拟精度进行了验证. 结果表明, 本模型的模拟结果与物理模型或理论分析结果吻合良好, 能较为准确地再现不可压缩水气二相流运动现象. 鉴于WENO格式和THINC法本身在算法及应用等方面仍在不断改进, 本研究提出的WENO-THINC耦合模型为后续更高精度的二相流计算模型开发提供了一种研究思路.

     

  • [1] Almgren AS, Bell JB, Rendleman CA, et al. Low Mach number modeling of type Ia supernovae. I. Hydrodynamics. The Astrophysical Journal, 2006,637(2):922-936
    [2] Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. Journal of Computational Physics, 1994,115(1):200-212
    [3] Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 1987,71(2):231-303
    [4] 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017,49(1):93-104

    (Tong Fulin, Li Xinliang, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):93-104 (in Chinese))
    [5] 童福林, 李欣, 于长平 等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018,50(2):197-208

    (Tong Fulin, Li Xin, Yu Changping, et al. Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):197-208 (in Chinese))
    [6] 洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报, 2018,50(6):1356-1367

    (Hong Zheng, Ye Zhengyin. Study on evolution characteristics of isotropic turbulence passing through a normal shock wave. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1356-1367 (in Chinese))
    [7] Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 1988,77(2):439-471
    [8] Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 1981,39(1):201-225
    [9] 张洋, 陈科, 尤云祥 等. 壁面约束对裙带气泡动力学的影响. 力学学报, 2017,49(5):1050-1058

    (Zhang Yang, Chen Ke, You Yunxiang, et al. Confinement effect on the rising dynamics of a skirted bubble. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1050-1058 (in Chinese))
    [10] 詹杰民, 李熠华. 波浪破碎的一种混合湍流模拟模式. 力学学报, 2019,51(6):1712-1719

    (Zhan Jiemin, Li Yihua. A hybrid turbulence model for wave breaking simulation. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1712-1719 (in Chinese))
    [11] 邓斌, 王孟飞, 黄宗伟 等. 波浪作用下直立结构物附近强湍动掺气流体运动的数值模拟. 力学学报, 2020,52(2):408-419

    (Deng Bin, Wang Mengfei, Huang Zongwei, et al. Numerical simulation of the hydrodynamic characteristics of violent aerated flows near vertical structure under wave action. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):408-419 (in Chinese))
    [12] Zhao HY, Ming PJ, Zhang WP, et al. A direct time-integral THINC scheme for sharp interfaces. Journal of Computational Physics, 2019,393:139-161
    [13] Xiao F, Honma Y, Kono T. A simple algebraic interface capturing scheme using hyperbolic tangent function. International Journal for Numerical Methods in Fluids, 2005,48(9):1023-1040
    [14] Yokoi K. Efficient implementation of THINC scheme: A simple and practical smoothed VOF algorithm. Journal of Computational Physics, 2007,226(2):1985-2002
    [15] Ii S, Sugiyama K, Takeuchi S, et al. An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction. Journal of Computational Physics, 2012,231(5):2328-2358
    [16] Xie B, Ii S, Xiao F. An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation. International Journal for Numerical Methods in Fluids, 2014,76(12):1025-1042
    [17] Xie B, Xiao F. Toward efficient and accurate interface capturing on arbitrary hybrid unstructured grids: The THINC method with quadratic surface representation and Gaussian quadrature. Journal of Computational Physics, 2017,349:415-440
    [18] Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 1968,22(104):745-745
    [19] Jiang GS, Peng D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM Journal on Scientific Computing, 2000,21(6):2126-2143
    [20] Xiao F, Ii S, Chen C. Revisit to the thinc scheme: a simple algebraic vof algorithm. Journal of Computational Physics, 2011,230(19):7086-7092
    [21] Zalesak ST. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 1979,31(3):335-362
    [22] Rider WJ, Kothe DB. Reconstructing volume tracking. Journal of Computational Physics, 1998,141(2):112-152
    [23] Li Z, Oger G, Touzé D L. A finite volume weno scheme for immiscible inviscid two-phase flows. Journal of Computational Physics, 2020,418:109601
    [24] Grenier N, Vila JP, Villedieu P. An accurate low-mach scheme for a compressible two-fluid model applied to free-surface flows. Journal of Computational Physics, 2013,252:1-19
    [25] Lobovsky L, Botia-Vera E, Castellana F, et al. Experimental investigation of dynamic pressure loads during dam break. Journal of Fluids and Structures, 2014,48:407-434
    [26] Martin JC, Moyce WJ. Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London. Series A Mathematical and Physical Sciences, 1952,244(882):312-324
    [27] Dressler RF. Comparison of theories and experiments for the hydraulic dam-break wave. Int. Assoc. Sci. Hydrology, 1954,3(38):319-328
    [28] Peltonen P, Kanninen P, Laurila E, et al. The ghost fluid method for openfoam: A comparative study in marine context. Ocean Engineering, 2020,216:108007
    [29] Nguyen VT, Park WG. A volume-of-fluid (VOF) interface-sharpening method for two-phase incompressible flows. Computers & Fluids, 2017,152:104-119
    [30] Sun Z, Djidjeli K, Xing JT, et al. Modified mps method for the 2d fluid structure interaction problem with free surface. Computers & Fluids, 2015,122:47-65
    [31] Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. Journal of Computational Physics, 2005,207(2):542-567
    [32] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. Journal of Computational Physics, 2008,227(6):3191-3211
    [33] Fan P, Shen YQ, Tian BL, et al. A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2014,269:329-354
    [34] 骆信, 吴颂平. 改进的五阶WENO-Z+格式. 力学学报, 2019,51(6):1927-1939

    (Luo Xin, Wu Songping. An improved fifth-order WENO-Z+ scheme. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1927-1939 (in Chinese))
    [35] Baeza A, Burger R, Mulet P, et al. On the efficient computation of smoothness indicators for a class of WENO reconstructions. Journal of Scientific Computing, 2019,80:1240-1263
    [36] Bhise AA, Gande NR, Samala R, et al. An efficient hybrid WENO scheme with a problem independent discontinuity locator. International Journal for Numerical Methods in Fluids, 2019,91:1-28
  • 加载中
计量
  • 文章访问数:  306
  • HTML全文浏览量:  31
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16

目录

    /

    返回文章
    返回