EI、Scopus 收录
中文核心期刊

节点梯度光滑有限元配点法

樊礼恒, 王东东, 刘宇翔, 杜洪辉

樊礼恒, 王东东, 刘宇翔, 杜洪辉. 节点梯度光滑有限元配点法[J]. 力学学报, 2021, 53(2): 467-481. DOI: 10.6052/0459-1879-20-361
引用本文: 樊礼恒, 王东东, 刘宇翔, 杜洪辉. 节点梯度光滑有限元配点法[J]. 力学学报, 2021, 53(2): 467-481. DOI: 10.6052/0459-1879-20-361
Fan Liheng, Wang Dongdong, Liu Yuxiang, Du Honghui. A FINITE ELEMENT COLLOCATION METHOD WITH SMOOTHED NODAL GRADIENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. DOI: 10.6052/0459-1879-20-361
Citation: Fan Liheng, Wang Dongdong, Liu Yuxiang, Du Honghui. A FINITE ELEMENT COLLOCATION METHOD WITH SMOOTHED NODAL GRADIENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. DOI: 10.6052/0459-1879-20-361
樊礼恒, 王东东, 刘宇翔, 杜洪辉. 节点梯度光滑有限元配点法[J]. 力学学报, 2021, 53(2): 467-481. CSTR: 32045.14.0459-1879-20-361
引用本文: 樊礼恒, 王东东, 刘宇翔, 杜洪辉. 节点梯度光滑有限元配点法[J]. 力学学报, 2021, 53(2): 467-481. CSTR: 32045.14.0459-1879-20-361
Fan Liheng, Wang Dongdong, Liu Yuxiang, Du Honghui. A FINITE ELEMENT COLLOCATION METHOD WITH SMOOTHED NODAL GRADIENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. CSTR: 32045.14.0459-1879-20-361
Citation: Fan Liheng, Wang Dongdong, Liu Yuxiang, Du Honghui. A FINITE ELEMENT COLLOCATION METHOD WITH SMOOTHED NODAL GRADIENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 467-481. CSTR: 32045.14.0459-1879-20-361

节点梯度光滑有限元配点法

基金项目: 1) 国家自然科学基金资助项目(11772280);国家自然科学基金资助项目(12072302)
详细信息
    作者简介:

    2) 王东东, 教授, 主要研究方向: 计算力学与结构工程. E-mail: ddwang@xmu.edu.cn

    通讯作者:

    王东东

  • 中图分类号: O242.2

A FINITE ELEMENT COLLOCATION METHOD WITH SMOOTHED NODAL GRADIENTS

  • 摘要: 配点法构造简单、计算高效, 但需要用到数值离散形函数的高阶梯度,而传统有限元形函数的梯度在单元边界处通常仅具有C$^{0}$连续性,因此无法直接用于配点法分析. 本文通过引入有限元形函数的光滑梯度,提出了节点梯度光滑有限元配点法. 首先基于广义梯度光滑方法,定义了有限元形函数在节点处的一阶光滑梯度值,然后以有限元形函数为核函数构造了有限元形函数的一阶光滑梯度,进而对一阶光滑梯度直接求导并用一阶光滑梯度替换有限元形函数的标准梯度,即完成了有限元形函数二阶光滑梯度的构造.文中以线性有限元形函数为基础的理论分析表明,其光滑梯度不仅满足传统线性有限元形函数梯度对应的一阶一致性条件,而且在均布网格假定下满足更高一阶的二阶一致性条件.因此与传统线性有限元法相比,基于线性形函数的节点梯度光滑有限元法的$L_{2}$和$H_{1}$误差均具有二次精度,即其$H_{1}$误差收敛阶次比传统有限元法高一阶, 呈现超收敛特性.文中通过典型算例验证了节点梯度光滑有限元配点法的精度和收敛性,特别是其$H_{1}$或能量误差的精度和收敛率都明显高于传统有限元法.
    Abstract: The collocation formulation has the salient advantages of simplicity and efficiency, but it requires the employment of high order gradients of shape functions associated with certain discretized strategies. The conventional finite element shape functions are usually C$^{0}$ continuous and thus cannot be directly adopted for the collocation analysis. This work presents a finite element collocation method through introducing a set of smoothed gradients of finite element shape functions. In the proposed formulation, the first order nodal smoothed gradients of finite element shape functions are defined with the aid of the general gradient smoothing methodology. Subsequently, the first order smoothed gradients of finite element shape functions are realized by selecting the finite element shape functions as the kernel functions for gradient smoothing. A further differential operation on the first order smoothed gradients then leads to the desired second order smoothed gradients of finite element shape functions, where it is noted that the conventional first order gradients are replaced by the first order smoothed gradients of finite element shape functions. It is theoretically proven that the proposed smoothed gradients of linear finite element shape functions not only meet the first order gradient reproducing conditions that are also satisfied by the conventional gradients of finite element shape functions, but also meet the second order gradient reproducing conditions for uniform meshes that cannot be fulfilled by the conventional finite element formulation. The proposed smoothed gradients of finite element shape functions enable a second order accurate finite element collocation formalism regarding both $L_{2}$ and $H_{1}$ errors, which is one order higher than the conventional linear finite element method in term of $H_{1}$ error, i.e., a superconvergence is achieved by the proposed finite element collocation method with smoothed nodal gradients. Numerical results well demonstrate the convergence and accuracy of the proposed finite element collocation method with smoothed nodal gradients, particularly the superior convergence and accuracy over the conventional finite element method according to the $H_{1}$ or energy errors.
  • [1] Zienkiewicz OC, Taylor RL, Zhu JZ. The Finite Element Method: Its Basis and Fundamentals. 7th Edition. Berlin: Elsevier, 2015
    [2] 田荣. C$^{1}$连续型广义有限元格式. 力学学报, 2019,51(1):263-277

    (Tian Rong. A GFEM with C$^{1}$ continuity. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(1):263-277 (in Chinese))

    [3] 张雄, 刘岩, 马上. 无网格法的理论与应用. 力学进展, 2009,39(1):1-36

    (Zhang Xiong, Liu Yan, Ma Shang. Meshfere methods and their applications. Advances in Mechanics. 2009,39(1):1-36 (in Chinese))

    [4] Chen JS, Hillman M, Chi SW. Meshfree methods: progress made after 20 years. Journal of Engineering Mechanics-ASCE, 2017,143(4):04017001
    [5] Wang DD, Wu JC. An inherently consistent reproducing kernel gradient smoothing framework toward efficient Galerkin meshfree formulation with explicit quadrature. Computer Methods in Applied Mechanics and Engineering, 2019,349:628-672
    [6] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005,194:4135-4195
    [7] Zhang HJ, Wang DD. Reproducing kernel formulation of B-spline and NURBS basis functions: A meshfree local refinement strategy for isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2017,320:474-508
    [8] Kansa EJ. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Computers & Mathematics with Applications, 1990,19(8-9):147-161
    [9] Zhang X, Song KZ, Lu MW. et al. Meshless methods based on collocation with radial basis functions. Computational Mechanics, 2000,26(4):333-343
    [10] Chen W. A meshless, integration-free, and boundary-only RBF technique. Computers & Mathematics with Applications, 2002,43(3-5):379-391
    [11] Chen JS, Hu W, Hu H. Reproducing kernel enhanced local radial basis collocation method. International Journal for Numerical Methods in Engineering, 2008,75:600-627
    [12] 王莉华, 李溢铭, 褚福运. 基于分区径向基函数配点法的大变形分析. 力学学报, 2019,51(3):743-753

    (Wang Lihua, Li Yiming, Zhu Fuyun. Finite subdomain radial basis collocation method for the large deformation analysis. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):743-753 (in Chinese))

    [13] Mountris KA, Pueyo E. The radial point interpolation mixed collocation method for the solution of transient diffusion problems. Engineering Analysis with Boundary Elements, 2020,121:207-216
    [14] Breitkopf P, Touzot G, Villon P. Double grid diffuse collocation method. Computational Mechanics, 2000,25(2):199-206
    [15] Aluru NR. A point collocation method based on reproducing kernel approximations. International Journal for Numerical Methods in Engineering, 2015,47(6):1083-1121
    [16] Chi SW, Chen JS, Hu HY. et al. A gradient reproducing kernel collocation method for boundary value problems. International Journal for Numerical Methods in Engineering, 2013,93:1381-1402
    [17] Mahdavi A, Chi SW, Zhu HQ. A gradient reproducing kernel collocation method for high order differential equations. Computational Mechanics, 2019,64:1421-1454
    [18] Wang LH, Qian ZH. A meshfree stabilized collocation method (SCM) based on reproducing kernel approximation. Computer Methods in Applied Mechanics and Engineering, 2020,371:113303
    [19] Auricchio F, Beir?o L, Veiga D. et al. Isogeometric collocation methods. Mathematical Models and Methods in Applied Sciences, 2010,20:2075-2107
    [20] Maurin F, Greco F, Coox L. et al. Isogeometric collocation for Kirchhoff-Love plates and shells. Computer Methods in Applied Mechanics & Engineering, 2018,328:396-420
    [21] Kapl M, Vitrih V. Isogeometric collocation on planar multi-patch domains. Computer Methods in Applied Mechanics and Engineering, 2020,360:112684
    [22] 高效伟, 徐兵兵, 吕军 等. 自由单元法及其在结构分析中的应用. 力学学报, 2019,51(3):703-713

    (Gao Xiaowei, Xu Bingbing, Lü Jun, et al. Free element method and its application in structural analysis. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):703-713 (in Chinese))

    [23] Gao XW, Gao L, Zhang Y, et al. Free element collocation method: A new method combining advantages of finite element and mesh free methods. Computers & Structures, 2019,215:10-26
    [24] Wang DD, Wang JR, Wu JC. Superconvergent gradient smoothing meshfree collocation method. Computer Methods in Applied Mechanics and Engineering, 2018,340:728-766
    [25] Wang DD, Wang JR, Wu JC. Arbitrary order recursive formulation of meshfree gradients with application to superconvergent collocation analysis of Kirchhoff plates. Computational Mechanics, 2020,65:877-903.
    [26] Qi DL, Wang DD, Deng LK, et al. Reproducing kernel meshfree collocation analysis of structural vibrations. Engineering Computations, 2019,36(3):734-764
    [27] 邓立克, 王东东, 王家睿 等. 薄板分析的线性基梯度光滑伽辽金无网格法. 力学学报, 2019,51(3):688-702

    (Deng Like, Wang Dongdong, Wang Jiarui, et al. A gradient smoothing Galerkin method for thin plate analysis with linear basis function. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):690-792 (in Chinese))

    [28] Chen JS, Wu CT, Yoon S. et al. A stabilized conforming nodal integration for Galerkin meshfree methods. International Journal for Numerical Methods in Engineering, 2001,50:435-466
    [29] Liu GR, Dai KY, Nguyen TT. A smoothed finite element method for mechanics problems. Computational Mechanics, 2007,39:859-877
    [30] Idesman A, Dey B. The use of the local truncation error for the increase in accuracy of the linear finite elements for heat transfer problems. Computer Methods in Applied Mechanics and Engineering, 2017,319:52-82
  • 期刊类型引用(10)

    1. 姜贞强,王滨. 海上风力机前端风电场瞬态重构研究. 太阳能学报. 2024(03): 65-72 . 百度学术
    2. 张立军,于洪栋,缪俊杰,朱怀宝,顾嘉伟,李想. 新型漂浮式垂直轴风力发电机平台的动态响应分析. 船海工程. 2020(03): 125-131 . 百度学术
    3. 陈嘉豪,胡志强. 半潜式海上浮式风机气动阻尼特性研究. 力学学报. 2019(04): 1255-1265 . 本站查看
    4. 刘利琴,赵海祥,赵晶瑞,郭颖. 考虑Spar型浮式基础粘性阻尼作用浮式垂直轴风机运动性能研究(英文). 船舶力学. 2019(09): 1110-1121 . 百度学术
    5. 周斌珍,胡俭俭,谢彬,丁波寅,夏英凯,郑小波,林志良,李晔. 风浪联合发电系统水动力学研究进展. 力学学报. 2019(06): 1641-1649 . 本站查看
    6. 王千,刘桦,房詠柳,邵奇. 孤立波与淹没平板相互作用的三维波面和水动力实验研究. 力学学报. 2019(06): 1605-1613 . 本站查看
    7. 陈嘉豪,刘格梁,胡志强. 海上浮式风机时域耦合程序原理及其验证. 上海交通大学学报. 2019(12): 1440-1449 . 百度学术
    8. 刘利琴,赵海祥,袁瑞,黄鑫,李焱. H型浮式垂直轴风力机刚—柔耦合多体动力学建模及仿真. 海洋工程. 2018(03): 1-9 . 百度学术
    9. 于晓东,袁腾飞,李代阁,曲航,郑旭航. 极端工况双矩形腔静压推力轴承动态特性. 力学学报. 2018(04): 899-907 . 本站查看
    10. 王磊,王娜. 垂直轴风机可行性分析报告. 智能城市. 2017(06): 53-54 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  1079
  • HTML全文浏览量:  257
  • PDF下载量:  133
  • 被引次数: 31
出版历程
  • 收稿日期:  2020-10-19
  • 刊出日期:  2021-02-09

目录

    /

    返回文章
    返回