BUCKLING LANDSCAPE OF CAN UNDER THE COMBINDE ACTION OF AXIAL COMPRESSION-TORSION-LATERAL POKING-INTERNAL PRESSURE
-
摘要: 柱壳结构广泛应用于各个领域, 但由于其对初始缺陷较为敏感, 容易发生灾难性的屈曲失稳. 本文利用非线性有限元分析程序ABAQUS研究了柱壳屈曲问题, 并应用到了易拉罐的屈曲分析. 首先采用数值模拟的方法验证了Virot等学者的易拉罐屈曲试验结果, 然后为了获得屈曲的一些普适结果, 进一步考察了柱壳的屈曲表现. 对柱壳结构在不同载荷组合、不同几何参数作用下进行了细致分析. 为了讨论的直观, 本文绘制了柱壳结构在受到侧压-轴压载荷作用下外力-屈曲载荷-位移三维屈曲地貌图(称为landscape). 结果表明: 在侧压-轴压-扭转载荷作用下, 试件力-位移曲线出现了"cliff"(断崖)现象; 扭转载荷的施加不利于试件整体稳定性, 并造成了试件对初始缺陷的敏感性; 对于受到轴压-扭转载荷作用的试件, 本文定义承载力为零的平面为"sea level"(海平面)来区分试件破坏模式; 通过对不同边界条件的试件进行分析, 发现试件两端固定可以有效地增加结构的承载能力, 提高稳定性. 对柱壳结构内部充气可以大幅度提升结构的承载能力和稳定性, 减小对初始缺陷的敏感度.Abstract: The cylindrical shell structure has been widely used in the various fields. However, the cylindrical shells are liable to catastrophic buckling, because of the notorious imperfection. The aim of this work is to investigate the buckling of the cylindrical shells based on the non-linear finite element analysis program ABAQUS and applied to the buckling analysis of cans. Firstly, the numerical simulation method was used to verify the buckling test results of the can by Virot et al. In order to obtain some qualitative results of buckling,the buckling behaviour of the cylindrical shells will be investigated. In this article, we focus on the effect of different load combinations and different geometric parameters of the cylindrical shells. The straightforward, simple analysis of the buckling of the cylindrical shells under the axially compressed-lateral perturbation load is presented. We show that the three-dimensional curves of external force-buckling load-displacement called landscape. The numerical results indicate that: the phenomenon of "cliff" appears in the force-displacement curves of specimens under the action of lateral pressure-axially compressed-torsional load; It will be appreciated that the torsional is not conducive to the stability of the specimen and makes the specimen sensitive to the initial imperfections; For specimen under axially compressed-torsional load, in this paper, the plane with zero bearing capacity is defined as "sea level" to distinguish the failure modes of specimens; The results of specimens with different boundary conditions shows that the bearing capacity of the cylindrical shells can be improved with fixed boundaries. The internal pressure can greatly improve the bearing capacity and stability of the structure and reduce the imperfection-sensitivity.
-
Keywords:
- cylindrical shells /
- buckling /
- landscape /
- cans /
- finite element analysis
-
-
[1] Euler L. De curvis elasticis, Leonhard Euler's Elastic Curves. Oldfather WA, Ellis CA, Brown DM. Belgium: The St Catherine Press, 1933 [2] Timoshenko S. History of Strength of Materials. New York/ Toronto/London: McGraw-Hill Book Company, 1953 [3] Timshenko SP, Gere JM. Theory of Elastic Stability. 2nd ed. New York: Dover Publications Inc, 2009 [4] Koiter WT. On the stability of elastic equilibrium. National Aeronautics and Space Administration, 1967 [5] Hutchinson JW, Koiter WT. Postbuckling theory. Appl. Mech. Rev, 1970,23(12):1353-1366 [6] Singer J, Arbocz J, Babcock CDJ. Buckling of imperfect stiffened cylindrical shells under axial compression. AIAA Journal, 1970,9(1):8 [7] Thompson JMT, Hunt GW. A General Theory of Elastic Stability. London: Wiley, 1973 [8] Arbocz J. The Effect of Initial Imperfections on Shell Stability. In: (Fung Y C and Sechler E E eds). Thin-Shell Structures, Theory, Experiment and Design. Prentice Hall: Englewood Cliffs N J, 1974: 205-245 [9] Sun BH. Buckling problems of sandwich shells. Delft University of Technology. Delft University of Technology, 1992. Report LR-690, pp 1-99 [10] Yeh KY, Sun BH, Rimrott FPJ. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach. Part I. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1994,14(3-4):239-248 [11] Yeh KY, Sun BH, Rimrott FPJ. Buckling of imperfect sandwich cones under axial compression-equivalent-cylinder approach. Part II. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1994,15(1):1-12 [12] Sun BH, Yeh KY, Rimrott FPJ. On the buckling of structures. Scientific Journal for Fundamentals and Applications of Engineering Mechanics, 1995,15(2):129-140 [13] Sun BH. Modified Koiter's buckling theory based on the generalized variational principles. CERECAM Report No.244, University of Cape Town, 1994 [14] Budiansky B. Theory of buckling and post-buckling behavior of elastic structures. Advances in Applied Mechanics, 1974,14 [15] Elishakoff I. Probabilistic resolution of the twentieth century conundrum in elastic stability. 2014,59:35-57 [16] 徐凡, 汪婷, 杨易凡. 薄膜拉伸褶皱失稳力学进展. 力学季刊, 2020,41(2):207-220 (Xu Fan, Wang Ting, Yang Yifan. Wrinkling of stretched films: A review. Chinese Quart. Mech, 2020,41(2):207-220 (in Chinese))
[17] Yang YF, Dai HH, Xu F. et al. Pattern transitions in a soft cylindrical shell. Physical Review Letters, 2018,120:215503 [18] Xu F, Fu C, Yang Y. Water affects morphogenesis of growing aquatic plant leaves. Physical Review Letters, 2020,124:038003 [19] 曹进军, 张卉婷, 张亮 等. 对角受拉方膜褶皱变形幅值的理论预测及实验验证. 力学学报, 2019,51(5):1403-1410 (Cao Jinjun, Zhang Huiting, Zhang Liang, et al. Theoretical prediction and experimental verification of wrinkle amplitude in a square membrane subjected to diagonal tension. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(5):1403-1410 (in Chinese))
[20] 夏元明, 张威, 崔天宁 等. 金属多级类蜂窝的压溃行为研究. 力学学报, 2019,51(3):873-883 (Xia Yuanming, Zhang Wei, Cui Tianning, et al. Investigation on crushing behavior of metal honeycome-like hierarchical structures. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):873-883 (in Chinese))
[21] Yan H, Yang F, Pan D. et al. Sterically controlled mechanochemistry under hydrostatic pressure. Nature, 2018,554(7693):505 [22] Yang W, Li ZM, Shi W. et al. Review on auxetic materials. Journal of Materials ence, 2004,39(10):3269-3279 [23] Alderson A, Alderson KL. Auxetic materials. Journal of Aerospace Engineering, 2007,221(4):565-575 [24] Zheng XY, Howon Lee, Weisgraber Todd H. et al. Ultralight, ultrastiff mechanical metamaterials. Science, 2014,344:6190 [25] Banerjee A, Bernoulli D, Zhang H. et al. Ultralarge elastic deformation of nanoscale diamond. Science, 2018,360(6386):300-302 [26] Liu B, Silverberg JL, Evans AA. et al. Topological kinematics of origami metamaterials. Nature Physics, 2018,14:811-815 [27] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展. 力学学报, 2019,51(3):656-689 (Ren Xin, Zhang Xiangyu, Xie Yimin. Research progress in auxetic materials and structures. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):656-689 (in Chinese))
[28] Von Karman T, Tsien H S. The buckling of spherical shells by external pressure. Journal of the Aeronautical Sciences, 1939,7(2):43-50 [29] von Karman T, Tsien H S. The buckling of thin cylindrical shells under axial compression. Journal of the Aeronautical Sciences, 1941,8:303-312 [30] Tsien HS. A theory for the buckling of thin shells. Journal of the Aeronautical Sciences, 1942,9(10):373-384 [31] Koiter WT. On the stability of elastic equilibrium. National Aeronautics and Space Administration, 1967 [32] Tsien HS. Lower buckling load in the non-linear buckling theory for thin shells. Quarterly of Applied Mathematics, 1947,5(2):236-237 [33] Stein M. The effect on the buckling of perfect cylinders of prebuckling deformations and stresses induced by edge support. NASA TN D-1510, 1962: 217 [34] NASA. Buckling of thin-walled circular cylinders. NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington DC, 1965. Technical Report No. NASA SP-8007 [35] Mark W, Hilburger. Developing the Next Generation Shell Buckling Design Factors and Technologies. American Institute of Aeronautics and Astronautics, 2007 [36] Gerasimidis S, Virot E, Hutchinson J W. et al. On establishing buckling knockdowns for imperfection-sensitive shell structures. Journal of Applied Mechanics, 2018,85(9):091010 [37] NASA. Buckling of thin-walled doubly curved shells. NASA Space Vehicle Design Criteria, National Aeronautics and Space Administration, Washington DC, 1969. Technical Report No. NASA SP-8032 [38] Seide P, Weingarten VI. On the buckling of circular cylindrical shells under pure bending. Journal of Applied Mechanics, 1961,28(1):112 [39] Hutchinson J. Axial buckling of pressurized imperfect cylindrical shells. AIAA Journal, 1965,3(8):1461-1466 [40] Babcock Jr C D. The influence of the testing machine on the buckling of cylindrical shells under axial compression. International Journal of Solids and Structures, 1967,3(5):809-817 [41] Riks E. The application of Newton's method to the problem of elastic stability. J Appl Mech, 1972,39(4):1060-1066 [42] Brush DO, Almroth BO. Buckling of Bars, Plates and Shells. New York: McGraw-Hill, 1975 [43] Arbocz J, Sechler EE. On the buckling of stiffened imperfect cylindrical shells. AIAA Journal, 1976,14(11):1611-1617 [44] Arbocz J. Past, present and future of shell stability analysis. Delft University of Technology. Zeitschrift für Flugwissenschaften und Weltraumforschung, 1981,5(6):335-348 [45] Arbocz J. Potier-Ferry M, Singer J, et al. Buckling and Post-Buckling. Berlin Heidelberg: Springer, 1987 [46] Singer J. Buckling Experiments: Experimental Methods in Buckling of Thin-walled Structures. New York: John Wiley & Sons Inc, 1998 [47] Singer J. Buckling experiments: Experimental methods in buckling of thin-walled structures. Applied Mechanics Reviews, 2002,56(1):B5 [48] Bushnell D. Shell buckling. http://shellbuckling.com/index.php. 2004 [49] Van Slooten RA, Soong TT. Buckling of a long, axially compressed, thin cylindrical shell with random initial imperfections. Journal of Applied Mechanics, 1972,39(4):634-635 [50] Narasimhan KY, Hoff NJ. Snapping of imperfect thin-walled circular cylindrical shells of finite length. Journal of Applied Mechanics, 1971,38(1):162-171 [51] Tennyson RC, Muggeridge DB, Caswell RD. New design criteria for predicting buckling of cylindrical shells under axial compression. Journal of Spacecraft & Rockets, 1971,8(10):1062-1067 [52] Almroth BO, Holmes AMC, Brush DO. An experimental study of the bucking of cylinders under axial compression. Experimental Mechanics, 1964,4(9):263-270 [53] 周承倜. 薄壳弹塑性稳定性理论. 北京: 国防工业出版社, 1979 (Zhou Chengti. Elastic Plastic Stability Theory of Thin Shells. Beijing: National Defense Industry Press, 1979 (in Chinese))
[54] Krasovsky V, Marchenko V, Schmidt R. Deformation and buckling of axially compressed cylindrical shells with local loads in numerical simulation and experiments. Thin-Walled Structures, 2011,49(5):576-580 [55] Haynie W, Hilburger M, Bogge M, et al. Validation of lower-bound estimates for compression-loaded cylindrical shells 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2012 [56] Thompson JMT. Advances in shell buckling: Theory and experiments. International Journal of Bifurcation And Chaos, 2015,25(01):1530001 [57] Virot E, Kreilos T, Schneider TM. et al. Stability landscape of shell buckling. Phys. Rev. Lett., 2017: 119 [58] 徐春杰, 张浩, 许帅 等. 易拉罐用铝基和铁基材料组织与力学性能对比研究. 铸造技术, 2018,314(5):14-17 (Xu Chunjie, Zhang Hao, Xu Shuai, et al. Comparative on microstructure and mechanical properties of Al-based and iron-based materials for pop-top cans. Foundry Technology. 2018,314(5):14-17 (in Chinese))
[59] 李魏梓, 宋昕宜, 杨凯 等. 易拉罐轴向受压失稳试验研究及有限元分析. 制造业自动化, 2014,15:83-85, 101 (Li Weizi, Song Xinyi, Yang Kai, et al. The research and finite-element analysis of axial collapse of pop can. Manufacturing Automation. 2014,15:83-85, 101 (in Chinese))
计量
- 文章访问数: 1078
- HTML全文浏览量: 160
- PDF下载量: 151