[1] | 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013,33:177-351 | [1] | ( Wang Weihua. The nature and properties of amorphous mater. Progress in Physics, 2013,33(5):177-351 (in Chinese)) | [2] | Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019,106:100561 | [3] | Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019,104:250-329 | [4] | 王云江, 魏丹, 韩懂 等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020,52(2):303-317 | [4] | ( Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):303-317 (in Chinese)) | [5] | 郝奇, 乔吉超, Pelletier JM. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368 | [5] | ( Hao Qi, Qiao Jichao, Pelletier JM. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese)) | [6] | 史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测. 力学学报, 2020,52(2):369-378 | [6] | ( Shi Ronghao, Xiao Pan, Yang Rong. Prediction of shear transformation zones in metallic glasses based on laplacian of atomic volume. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):369-378 (in Chinese)) | [7] | 陈迎红, 王云江, 乔吉超. La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$金属玻璃应力松弛行为. 力学学报, 2020,52(3):740-748 | [7] | ( Chen Yinghong, Wang Yunjiang, Qiao Jichao. Stress relaxation of La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$ metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):740-748 (in Chinese)) | [8] | Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25(4):407-415 | [9] | Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979,27:47-58 | [10] | 汪卫华. 非晶中"缺陷"——流变单元研究. 中国科学: 物理学力学天文学, 2014,44:396-405 | [10] | ( Wang Weihua. Flow units: The "defects" of amorphous alloys. Scientia Sinica Physica, Mechanica & Astronomica, 2014,44:396-405 (in Chinese)) | [11] | Wang WH. Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics, 2006,99:093506 | [12] | Johnson W, Samwer K. A universal criterion for plastic yielding of metallic glasses with a ($T/T_{g})$ 2/3 temperature dependence. Physical Review Letters, 2005,95:195501 | [13] | Mitrofanov YP, Makarov A, Khonik V, et al. On the nature of enthalpy relaxation below and above the glass transition of metallic glasses. Applied Physics Letters, 2012,101:131903 | [14] | Tsyplakov A, Mitrofanov YP, Khonik V, et al. Relationship between the heat flow and relaxation of the shear modulus in bulk PdCuP metallic glass. Journal of Alloys and Compounds, 2015,618:449-454 | [15] | Granato A. Interstitialcy model for condensed matter states of face-centered-cubic metals. Physical Review Letters, 1992,68:974-977 | [16] | Granato AV. Interstitialcy theory of simple condensed matter. The European Physical Journal B, 2014,87:18 | [17] | Schober H, Laird BB. Localized low-frequency vibrational modes in glasses. Physical Review B, 1991,44:6746 | [18] | Holder J, Granato A, Rehn L. Experimental evidence for split interstitials in copper. Physical Review Letters, 1974,32:1054 | [19] | Goncharova E, Konchakov R, Makarov A, et al. Identification of interstitial-like defects in a computer model of glassy aluminum. Journal of Physics: Condensed Matter, 2017,29:305701 | [20] | Kobelev N, Khonik V. Theoretical analysis of the interconnection between the shear elasticity and heat effects in metallic glasses. Journal of Non-Crystalline Solids, 2015,427:184-190 | [21] | Makarov A, Mitrofanov YP, Afonin G, et al. Shear susceptibility - a universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and "defect" structure of metallic glasses. Intermetallics, 2017,87:1-5 | [22] | Makarov A, Afonin G, Mitrofanov YP, et al. Evolution of the activation energy spectrum and defect concentration upon structural relaxation of a metallic glass determined using calorimetry and shear modulus data. Journal of Alloys and Compounds, 2018,745:378-384 | [23] | Makarov A, Mitrofanov YP, Afonin G, et al. Predicting temperature dependence of the shear modulus of metallic glasses using calorimetric data. Scripta Materialia, 2019,168:10-13 | [24] | Zhu ZD, Ma E, Xu J. Elevating the fracture toughness of Cu$_{49}$Hf$_{42}$Al$_{9}$ bulk metallic glass: Effects of cooling rate and frozen-in excess volume. Intermetallics, 2014,46:164-172 | [25] | Makarov A, Mitrofanov YP, Afonin G, et al. Shear susceptibility - A universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and "defect" structure of metallic glasses. Intermetallics, 2017,87:1-5 | [26] | 管鹏飞, 王兵, 吴义成 等. 不均匀性: 非晶合金的灵魂. 物理学报, 2017,66(17):176112 | [26] | ( Guan Pengfei, Wang Bing, Wu Yicheng, et al. Heterogeneity: The soul of metallic glasses. Acta Physica Sinica, 2017,66(17):176112 (in Chinese)) | [27] | Mitrofanov YP, Kobelev N, Khonik V. Different metastable equilibrium states in metallic glasses occurring far below and near the glass transition. Journal of Non-Crystalline Solids, 2018,497:48-55 | [28] | Makarov A, Afonin G, Mitrofanov YP, et al. Relationship between the heat effects and shear modulus changes occurring upon heating of a metallic glass into the supercooled liquid state. Journal of Non-Crystalline Solids, 2018,500:129-132 | [29] | Duan YJ, Qiao JC, Crespo D, et al. Link between shear modulus and enthalpy changes of Ti$_{16.7}$Zr$_{16.7}$Hf$_{16.7}$Cu$_{16.7}$Ni$_{16.7}$Be$_{16.7}$ high entropy bulk metallic glass. Journal of Alloys and Compounds, 2020,830:154564 | [30] | Dyre JC, Olsen NB, Christensen T. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Physical Review B, 1996,53:2171 | [31] | Mitrofanov YP, Wang D, Makarov A, et al. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity. Scientific Reports, 2016,6:1-6 | [32] | Makarov A, Mitrofanov YP, Konchakov R, et al. Density and shear modulus changes occurring upon structural relaxation and crystallization of Zr-based bulk metallic glasses: In situ measurements and their interpretation. Journal of Non-Crystalline Solids, 2019,521:119474 | [33] | Khonik V, Kitagawa K, Morii H. On the determination of the crystallization activation energy of metallic glasses. Journal of Applied Physics, 2000,87:8440-8443 | [34] | Makarov A, Khonik V, Mitrofanov YP, et al. Interrelationship between the shear modulus of a metallic glass, concentration of frozen-in defects, and shear modulus of the parent crystal. Applied Physics Letters, 2013,102:091908 | [35] | Egami T. Structural relaxation in metallic glasses. Annals of the New York Academy of Sciences, 1981,371:238-251 | [36] | Qiao JC, Pelletier JM. Kinetics of structural relaxation in bulk metallic glasses by mechanical spectroscopy: Determination of the stretching parameter $\beta _{KWW}$. Intermetallics, 2012,28:40-44 | [37] | Menard KP. Dynamic mechanical analysis: A practical introduction. CRC Press, Boca Raton, Florida, 2008 | [38] | Lyu G, Qiao J, Pelletier J, et al. Dynamic mechanical behaviors of a metastable $\beta $-type bulk metallic glass composite. Journal of Alloys and Compounds, 2020,819:153040 | [39] | Qiao JC, Pelletier JM, Esnouf C, et al. Impact of the structural state on the mechanical properties in a Zr-Co-Al bulk metallic glass. Journal of Alloys and Compounds, 2014,607:139-149 |
|