EI、Scopus 收录
中文核心期刊

铜基非晶合金热效应和剪切模量变化起源

张浪渟, Vitaly A Khonik, 乔吉超

张浪渟, Vitaly A Khonik, 乔吉超. 铜基非晶合金热效应和剪切模量变化起源[J]. 力学学报, 2020, 52(6): 1709-1718. DOI: 10.6052/0459-1879-20-233
引用本文: 张浪渟, Vitaly A Khonik, 乔吉超. 铜基非晶合金热效应和剪切模量变化起源[J]. 力学学报, 2020, 52(6): 1709-1718. DOI: 10.6052/0459-1879-20-233
Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. DOI: 10.6052/0459-1879-20-233
Citation: Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. DOI: 10.6052/0459-1879-20-233
张浪渟, Vitaly A Khonik, 乔吉超. 铜基非晶合金热效应和剪切模量变化起源[J]. 力学学报, 2020, 52(6): 1709-1718. CSTR: 32045.14.0459-1879-20-233
引用本文: 张浪渟, Vitaly A Khonik, 乔吉超. 铜基非晶合金热效应和剪切模量变化起源[J]. 力学学报, 2020, 52(6): 1709-1718. CSTR: 32045.14.0459-1879-20-233
Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. CSTR: 32045.14.0459-1879-20-233
Citation: Zhang Langting, Vitaly A Khonik, Qiao Jichao. ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1709-1718. CSTR: 32045.14.0459-1879-20-233

铜基非晶合金热效应和剪切模量变化起源

基金项目: 1) 国家自然科学基金(51971178);陕西省自然科学基金(2019JM-344);中央高校基本科研业务费专项资金(3102019ghxm007);中央高校基本科研业务费专项资金(3102017JC01-003)
详细信息
    作者简介:

    2) 乔吉超, 教授, 主要研究方向: 非晶合金的黏弹性力学行为. E-mail: qjczy@nwpu.edu.cn

    通讯作者:

    乔吉超

  • 中图分类号: O344.5,O344.4

ORIGIN OF HEAT EFFECTS AND SHEAR MODULUS CHANGES OF A Cu-BASED AMORPHOUS ALLOY

  • 摘要: 剪切模量在非晶合金黏性流动、扩散及结构弛豫等行为中起着重要作用. 宏观剪切弹性决定非晶合金热流变化.探索非晶合金在结构弛豫和玻璃转变过程中宏观力学性能与热流的关联有助于理解其力学行为起源. 本研究基于自间隙理论对Cu$_{49}$Hf$_{42}$Al$_{9}$非晶合金热流、剪切模量及黏度进行研究,建立剪切模量与热流之间的关联. 通过测量剪切模量精确测定自间隙缺陷浓度演化规律.从能量角度出发,通过激活能图谱探索自间隙缺陷浓度对非晶合金热力学性能的影响. 借助于动态力学分析仪研究非晶合金从室温到过冷液相区的动态弛豫行为,探索物理时效引起的结构弛豫以及内耗演化规律. 研究结果表明,自间隙理论可准确描述非晶合金的弛豫动力学、剪切软化及结构弛豫诱导的力学行为. 结合热流数据可以很好描述铸态和弛豫态非晶合金剪切模量随温度演化过程,激活能图谱直观表述了单位激活能可激活的自间隙缺陷浓度. 自间隙缺陷在结构弛豫中湮灭,表现为玻璃体系结构向更稳定状态迁移.在玻璃化转变过程中,缺陷浓度显著升高伴随热吸收,表现为原子大规模协同运动和剪切软化. 物理时效诱导非晶合金内耗和原子移动性降低. 过冷液相区内原子移动性高至消除了结构弛豫影响.
    Abstract: Shear modulus is one of important parameters to control the viscous flow, diffusion and structural relaxation of amorphous alloy. Macroscopic shear elasticity determines the change of heat flow. The correlation between the mechanical properties and the heat flow during the structural relaxation and glass transition is one of the important issues to understand the origin of mechanical properties of amorphous alloy. In the framework of the interstitialcy theory, the shear modulus, heat flow and viscosity of Cu$_{49}$Hf$_{42}$Al$_{9}$ amorphous alloy were used to probe the correlation between shear modulus and heat flow. In parallel, evolution of interstitialcy defects concentration was determined by shear modulus in initial and relaxed states. From the perspective of energy, the influence of interstitialcy defects concentration on the thermodynamic properties of amorphous alloy was investigated by activation energy spectrum (AES). Dynamic mechanical analysis (DMA) was used to investigate the dynamic mechanical process of the Cu$_{49}$Hf$_{42}$Al$_{9 }$ amorphous alloy. Structural relaxation induced by physical aging and the evolution of internal friction in-situ annealing was discussed. The results demonstrated that interstitialcy theory could accurately describe the relaxation kinetics, shear softening and other phenomena induced by structural relaxation of amorphous alloy. Temperature dependence of the shear modulus in initial and relaxed states can be well predicted by the data of differential scanning calorimetry (DSC). Activation energy spectrum directly reflects the interstitialcy defects concentration, which can be activated per unit activation energy. Structural relaxation leads to a reduction of the defect concentration, which indicates the structure transforms to a more stable state. During the glass transition process, defect concentration rapidly increases, which corresponds to the shear softening accompanied by heat absorption. Structural relaxation induces decrease of both internal friction and atomic mobility of amorphous alloy. However, the atomic mobility is high enough to eliminate the influence of structural relaxation on defect concentration in the supercooled liquid region.
  • [1] 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013,33:177-351
    [1] ( Wang Weihua. The nature and properties of amorphous mater. Progress in Physics, 2013,33(5):177-351 (in Chinese))
    [2] Wang WH. Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019,106:100561
    [3] Qiao JC, Wang Q, Pelletier JM, et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019,104:250-329
    [4] 王云江, 魏丹, 韩懂 等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020,52(2):303-317
    [4] ( Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):303-317 (in Chinese))
    [5] 郝奇, 乔吉超, Pelletier JM. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020,52(2):360-368
    [5] ( Hao Qi, Qiao Jichao, Pelletier JM. Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):360-368 (in Chinese))
    [6] 史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测. 力学学报, 2020,52(2):369-378
    [6] ( Shi Ronghao, Xiao Pan, Yang Rong. Prediction of shear transformation zones in metallic glasses based on laplacian of atomic volume. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(2):369-378 (in Chinese))
    [7] 陈迎红, 王云江, 乔吉超. La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$金属玻璃应力松弛行为. 力学学报, 2020,52(3):740-748
    [7] ( Chen Yinghong, Wang Yunjiang, Qiao Jichao. Stress relaxation of La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$ metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(3):740-748 (in Chinese))
    [8] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977,25(4):407-415
    [9] Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979,27:47-58
    [10] 汪卫华. 非晶中"缺陷"——流变单元研究. 中国科学: 物理学力学天文学, 2014,44:396-405
    [10] ( Wang Weihua. Flow units: The "defects" of amorphous alloys. Scientia Sinica Physica, Mechanica & Astronomica, 2014,44:396-405 (in Chinese))
    [11] Wang WH. Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics, 2006,99:093506
    [12] Johnson W, Samwer K. A universal criterion for plastic yielding of metallic glasses with a ($T/T_{g})$ 2/3 temperature dependence. Physical Review Letters, 2005,95:195501
    [13] Mitrofanov YP, Makarov A, Khonik V, et al. On the nature of enthalpy relaxation below and above the glass transition of metallic glasses. Applied Physics Letters, 2012,101:131903
    [14] Tsyplakov A, Mitrofanov YP, Khonik V, et al. Relationship between the heat flow and relaxation of the shear modulus in bulk PdCuP metallic glass. Journal of Alloys and Compounds, 2015,618:449-454
    [15] Granato A. Interstitialcy model for condensed matter states of face-centered-cubic metals. Physical Review Letters, 1992,68:974-977
    [16] Granato AV. Interstitialcy theory of simple condensed matter. The European Physical Journal B, 2014,87:18
    [17] Schober H, Laird BB. Localized low-frequency vibrational modes in glasses. Physical Review B, 1991,44:6746
    [18] Holder J, Granato A, Rehn L. Experimental evidence for split interstitials in copper. Physical Review Letters, 1974,32:1054
    [19] Goncharova E, Konchakov R, Makarov A, et al. Identification of interstitial-like defects in a computer model of glassy aluminum. Journal of Physics: Condensed Matter, 2017,29:305701
    [20] Kobelev N, Khonik V. Theoretical analysis of the interconnection between the shear elasticity and heat effects in metallic glasses. Journal of Non-Crystalline Solids, 2015,427:184-190
    [21] Makarov A, Mitrofanov YP, Afonin G, et al. Shear susceptibility - a universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and "defect" structure of metallic glasses. Intermetallics, 2017,87:1-5
    [22] Makarov A, Afonin G, Mitrofanov YP, et al. Evolution of the activation energy spectrum and defect concentration upon structural relaxation of a metallic glass determined using calorimetry and shear modulus data. Journal of Alloys and Compounds, 2018,745:378-384
    [23] Makarov A, Mitrofanov YP, Afonin G, et al. Predicting temperature dependence of the shear modulus of metallic glasses using calorimetric data. Scripta Materialia, 2019,168:10-13
    [24] Zhu ZD, Ma E, Xu J. Elevating the fracture toughness of Cu$_{49}$Hf$_{42}$Al$_{9}$ bulk metallic glass: Effects of cooling rate and frozen-in excess volume. Intermetallics, 2014,46:164-172
    [25] Makarov A, Mitrofanov YP, Afonin G, et al. Shear susceptibility - A universal integral parameter relating the shear softening, heat effects, anharmonicity of interatomic interaction and "defect" structure of metallic glasses. Intermetallics, 2017,87:1-5
    [26] 管鹏飞, 王兵, 吴义成 等. 不均匀性: 非晶合金的灵魂. 物理学报, 2017,66(17):176112
    [26] ( Guan Pengfei, Wang Bing, Wu Yicheng, et al. Heterogeneity: The soul of metallic glasses. Acta Physica Sinica, 2017,66(17):176112 (in Chinese))
    [27] Mitrofanov YP, Kobelev N, Khonik V. Different metastable equilibrium states in metallic glasses occurring far below and near the glass transition. Journal of Non-Crystalline Solids, 2018,497:48-55
    [28] Makarov A, Afonin G, Mitrofanov YP, et al. Relationship between the heat effects and shear modulus changes occurring upon heating of a metallic glass into the supercooled liquid state. Journal of Non-Crystalline Solids, 2018,500:129-132
    [29] Duan YJ, Qiao JC, Crespo D, et al. Link between shear modulus and enthalpy changes of Ti$_{16.7}$Zr$_{16.7}$Hf$_{16.7}$Cu$_{16.7}$Ni$_{16.7}$Be$_{16.7}$ high entropy bulk metallic glass. Journal of Alloys and Compounds, 2020,830:154564
    [30] Dyre JC, Olsen NB, Christensen T. Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Physical Review B, 1996,53:2171
    [31] Mitrofanov YP, Wang D, Makarov A, et al. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity. Scientific Reports, 2016,6:1-6
    [32] Makarov A, Mitrofanov YP, Konchakov R, et al. Density and shear modulus changes occurring upon structural relaxation and crystallization of Zr-based bulk metallic glasses: In situ measurements and their interpretation. Journal of Non-Crystalline Solids, 2019,521:119474
    [33] Khonik V, Kitagawa K, Morii H. On the determination of the crystallization activation energy of metallic glasses. Journal of Applied Physics, 2000,87:8440-8443
    [34] Makarov A, Khonik V, Mitrofanov YP, et al. Interrelationship between the shear modulus of a metallic glass, concentration of frozen-in defects, and shear modulus of the parent crystal. Applied Physics Letters, 2013,102:091908
    [35] Egami T. Structural relaxation in metallic glasses. Annals of the New York Academy of Sciences, 1981,371:238-251
    [36] Qiao JC, Pelletier JM. Kinetics of structural relaxation in bulk metallic glasses by mechanical spectroscopy: Determination of the stretching parameter $\beta _{KWW}$. Intermetallics, 2012,28:40-44
    [37] Menard KP. Dynamic mechanical analysis: A practical introduction. CRC Press, Boca Raton, Florida, 2008
    [38] Lyu G, Qiao J, Pelletier J, et al. Dynamic mechanical behaviors of a metastable $\beta $-type bulk metallic glass composite. Journal of Alloys and Compounds, 2020,819:153040
    [39] Qiao JC, Pelletier JM, Esnouf C, et al. Impact of the structural state on the mechanical properties in a Zr-Co-Al bulk metallic glass. Journal of Alloys and Compounds, 2014,607:139-149
  • 期刊类型引用(6)

    1. 吴少培,刘涛,柳康,李国芳,李得洋,丁旺才. 多源激励下惯容复合型非线性隔振系统的隔振性能研究. 噪声与振动控制. 2025(02): 6-13 . 百度学术
    2. 张祥宇,黄泳漩,付媛. 非线性弹性耦合下双馈风电机组的暂态能量转移与振荡特性分析. 电工技术学报. 2024(13): 3956-3974 . 百度学术
    3. 裴恺,俞绍楠,王安友,祁永东,沈昊,林晨希. 圆柱螺旋弹簧低疲劳寿命断裂原因分析. 金属制品. 2024(04): 25-28 . 百度学术
    4. 范盛喆,孙汝奇,赵轩,黄伟安,成利. 阻尼调控下两类动力吸振器的H_∞设计与试验. 力学学报. 2024(11): 3324-3332 . 本站查看
    5. 蓝思成. 临江地下工程深基坑开挖施工变形控制方法研究. 铁道建筑技术. 2023(09): 165-169 . 百度学术
    6. 李猛,李孙飚,丁虎. 非线性能量汇胞元减振效率分析. 力学学报. 2023(11): 2614-2623 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1104
  • HTML全文浏览量:  194
  • PDF下载量:  300
  • 被引次数: 9
出版历程
  • 收稿日期:  2020-06-28
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回