EI、Scopus 收录
中文核心期刊

低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型

李则霖, 李晖, 王东升, 任朝晖, 祖旭东, 周晋, 官忠伟, 王相平

李则霖, 李晖, 王东升, 任朝晖, 祖旭东, 周晋, 官忠伟, 王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型[J]. 力学学报, 2020, 52(6): 1690-1699. DOI: 10.6052/0459-1879-20-165
引用本文: 李则霖, 李晖, 王东升, 任朝晖, 祖旭东, 周晋, 官忠伟, 王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型[J]. 力学学报, 2020, 52(6): 1690-1699. DOI: 10.6052/0459-1879-20-165
Li Zelin, Li Hui, Wang Dongsheng, Ren Chaohui, Zu Xudong, Zhou Jin, Guan Zhongwei, Wang Xiangping. A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1690-1699. DOI: 10.6052/0459-1879-20-165
Citation: Li Zelin, Li Hui, Wang Dongsheng, Ren Chaohui, Zu Xudong, Zhou Jin, Guan Zhongwei, Wang Xiangping. A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1690-1699. DOI: 10.6052/0459-1879-20-165
李则霖, 李晖, 王东升, 任朝晖, 祖旭东, 周晋, 官忠伟, 王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型[J]. 力学学报, 2020, 52(6): 1690-1699. CSTR: 32045.14.0459-1879-20-165
引用本文: 李则霖, 李晖, 王东升, 任朝晖, 祖旭东, 周晋, 官忠伟, 王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型[J]. 力学学报, 2020, 52(6): 1690-1699. CSTR: 32045.14.0459-1879-20-165
Li Zelin, Li Hui, Wang Dongsheng, Ren Chaohui, Zu Xudong, Zhou Jin, Guan Zhongwei, Wang Xiangping. A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1690-1699. CSTR: 32045.14.0459-1879-20-165
Citation: Li Zelin, Li Hui, Wang Dongsheng, Ren Chaohui, Zu Xudong, Zhou Jin, Guan Zhongwei, Wang Xiangping. A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1690-1699. CSTR: 32045.14.0459-1879-20-165

低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型

基金项目: 1) 国家自然科学基金(51505070);国家自然科学基金(51970530);国家自然科学基金(U1708257);中央高校基本科研业务费专项资金(N160313002);中央高校基本科研业务费专项资金(N160312001);中央高校基本科研业务费专项资金(N170302001);中央高校基本科研业务费专项资金(N180302004);中央高校基本科研业务费专项资金(N180703018);中央高校基本科研业务费专项资金(N180312012);中央高校基本科研业务费专项资金(N180313006);装备预研重点实验室基金(6142905192512)
详细信息
    作者简介:

    2) 李晖,副教授,研究方向:复合材料结构动力学. E-mail: lh200300206@163.com

    通讯作者:

    李晖

  • 中图分类号: V257,O313.4

A DYNAMIC RESPONSE PREDICTION MODEL OF FIBER-METAL HYBRID LAMINATED PLATES EMBEDDED WITH VISCOELASTIC DAMPING CORE UNDER LOW-VELOCITY IMPACT EXCITATION

  • 摘要: 本文首次从解析角度建立了低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 首先,结合经典层合板理论和冯$\cdot$卡门假设,建立了嵌入黏弹性芯层的纤维金属混杂层合板弹性损伤本构关系. 然后,将层合板受冲击时的变形分成接触和拉伸两个区域,在接触区域内,对金属层采用 Von Mises 失效准则,纤维层采用 Tsai-Hill 失效准则和对黏弹性层采用指数 Drucker-Prager 失效准则判断层合板损伤情况. 考虑不同材料层对冲击动态响应的贡献来修正两个变形区域的位移公式,进而计算结构因弹性变形产生的应变能,以及接触区域因塑性变形消耗的能量,实现每次失效事件发生后各层材料的能量、位移和冲击接触力的理论求解,并给出了结构动态响应分析的具体流程图. 最后,以嵌入 Zn33 黏弹性芯层的 TA2 钛合金混杂 T300 碳纤维/树脂层合板为研究对象,开展落锤冲击实验. 验证结果表明,理论预测与测试获得的冲击接触力、位移响应以及冲击载荷-位移曲线吻合较好,且关注的峰值点计算误差最大不超过 9%,进而验证了所提出的理论模型的有效性.
    Abstract: A dynamic response prediction model of fiber-metal hybrid laminated plates embedded with a viscoelastic damping core under low-velocity impact excitation is established analytically for the first time in this research. Firstly, based on the classical laminates theory and von Kármán theory, the constitutive relation of elastic damage of fiber-metal hybrid laminated plates embedded with a viscoelastic damping core is established. Then, the deformation of laminated plates under impact is divided into contact and stretching areas. Within the contact areas, Von Mises failure criteria are used for metal layers, Tsay-Hill failure criteria for fiber layers and Drucker-Prager failure criteria for viscoelastic layer to determine the damage of laminated plates. Considering the contribution of different material layers to the dynamic response subjected to the impact load for modifying the displacement formula, the theoretical solutions of energy, displacement and impact contact force in each layer of such laminated plates are obtained after each failure event occurs, and gives the flow chart of structure dynamic response analysis of concrete. Finally, a TA2 titanium alloy and T300 fiber/epoxy hybrid plate embedded with the Zn33 viscoelastic core is taken as the research object to carry out the drop-weight impact test. The theoretical prediction results of the impact contact force, displacement response, and impact load-displacement curve are found to agree well with the measured ones. Besides, the maximum calculation errors of the concerned peaks are less than 9%. Thus, the effectiveness of the proposed theoretical model has been verified.
  • [1] Carrillo JG, Cantwell WJ. Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite. Mechanics of Materials, 2009,41(7):828-838
    [2] Chai GB, Manikandan P. Low velocity impact response of fibre-metal laminates-A review. Composite Structures, 2014,107:363-381
    [3] 侯淑娟, 梁慧妍, 汪全中 等. 基于迭代法的非线性弹性均质化研究. 力学学报, 2018,50(4):135-144
    [3] ( Hou Shujuan, Liang Huyan, Wang Quanzhong, et al. Study on nonlinear elastic homogenization with iterative method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):135-144 (in Chinese))
    [4] 李晖, 孙伟, 许卓 等. 纤维增强复合薄板振动测试与分析方法. 北京: 机械工业出版社, 2019
    [4] ( Li Hui, Sun Wei, Xu Zhuo, et al. Methods for Vibration Testing and Analysis of Fiber-Reinforced Composite. Beijing: China Machine Press, 2019 (in Chinese))
    [5] Vo TP, Guan ZW, Cantwell WJ, et al. Modelling of the low-impulse blast behaviour of fibre-metal laminates based on different aluminium alloys. Composites Part B: Engineering, 2013,44(1):141-151
    [6] 许卓, 李晖, 薛鹏程 等. 悬臂纤维金属复合薄板固有特性分析及验证. 东北大学学报, 2018,39(12):1737-1742
    [6] ( Xü Zhuo, Li Hui, Xue Pengcheng, et al. Natural characteristics analysis and validation of fiber metal laminates thin plates under cantilever boundary. Journal of Northeastern University, 2018,39(12):1737-1742 (in Chinese))
    [7] 陈倩, 张汉哲, 吴钦 等. 复合材料水翼水动力与结构强度特性数值研究. 力学学报, 2019,51(5):1350-1362
    [7] ( Chen Qian, Zhang Hanzhe, Wu Qin, et al. The numerical investifation on hydrodynamic and structural strength of a composite hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1350-1362 (in Chinese))
    [8] 张洁皓, 段晨, 侯玉亮 等. 基于渐进均匀化的平纹编织复合材料低速冲击多尺度方法. 力学学报, 2019,51(5):837-846
    [8] ( Zhang Jiehao, Duan Chen, Hou Yuliang, et al. Multi-scale method of plain woven composites subjected to low velocity impact based on asymptotic homogenization. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):837-846 (in Chinese))
    [9] Vlot A. Low-velocity impact loading on fibre reinforced aluminium laminates(ARALL) and other aircraft sheet materials. [PhD Thesis]. Delft: Delft University of Technology, 1991
    [10] Vlot A. Impact properties of fibre metal laminates. Composites Engineering, 1993,3(10):911-927
    [11] Vlot A. Impact loading on fibre metal laminates. International Journal of Impact Engineering, 1996,18(3):291-307
    [12] Vlot A, Kroon E, Rocca GL. Impact response of fiber metal laminates. Key Engineering Materials, 1998, 141-143:235-276
    [13] Davies GAO, Zhang X, Zhou G, et al. Numerical mod-elling of impact damage. Composites, 1994,25(5):350
    [14] Payeganeh GH, Ghasemi FA, Malekzadeh K. Dynamic response of fiber-metal laminates (FMLs) subjected to low-velocity impact. Thin-Walled Structures, 2010,48(1):62-70
    [15] Yiming F, Yiqi M, Yanping T. Damage analysis and dynamic response of elasto-plastic laminated composite shallow spherical shell under low velocity impact. International Journal of Solids and Structures, 2010,47(1):126-137
    [16] 毛贻齐. 低速冲击下损伤层合/功能梯度板壳的非线性动力学研究. [博士论文]. 长沙:湖南大学, 2011
    [16] ( Mao Yiqi. Nonlinear dynamic analysis for laminated/FGM plates and shells with damage under low velocity impact. [PhD Thesis]. Changsha: Hunan University, 2011 (in Chinese))
    [17] Starikov R. Assessment of impact response of fiber metal laminates. International Journal of Impact Engineering, 2013,59:38-45
    [18] 陈勇. 冲击载荷下纤维金属层板损伤行为及动态响应特性研究. [博士论文]. 哈尔滨:哈尔滨工业大学, 2014
    [18] ( Chen Yong. Research on characteristics of damage behavior and dynamic response of fibre-metal laminate under impact load. [PhD Thesis]. Harbin: Harbin Institute of Technology, 2014 (in Chinese))
    [19] Jones N. Note on the impact behaviour of fibre-metal laminates. International Journal of Impact Engineering, 2017,108:147-152
    [20] Cupia P, Nizio J. Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer. Journal of Sound and Vibration, 1995,183(1):99-114
    [21] 胡明勇, 王安稳. 纤维增强黏弹性复合材料层合板的自由振动和应力分析. 工程力学, 2010,27(8):10-14
    [21] ( Hu Mingyong, Wang Anwen. Free vibration and stresses analysis of fiber-reinforced viscoelastic composite laminated plates. Engineering Mechanics, 2010,27(8):10-14 (in Chinese))
    [22] Malekzadeh K, Khalili MR, Olsson R, et al. Higher-order dynamic response of composite sandwich panels with flexible core under simultaneous low-velocity im-pacts of multiple small masses. International Journal of Solids and Structures, 2006,43(22-23):6667-6687
    [23] Shariyat M, Hosseini SH. Eccentric impact analysis of pre-stressed composite sandwich plates with viscoelastic cores: A novel global-local theory and a refined contact law. Composite Structures, 2014,117:333-345
    [24] Wu C, Oehlers DJ, Rebentrost M, et al. Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs. Engineering Structures, 2009,31(9):2060-2069
    [25] Palazotto AN, Herup EJ, Gummadi LNB. Finite element analysis of low velocity impact on composite sandwich plates. Composite Structures, 2000,49(2):209-227
    [26] Li H, Xue PC, Guan ZW, et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with am-plitude-dependent property. Nonlinear Dynamics, 2018,94(3):2219-2241
    [27] Li H, Wu TF, Gao ZJ, et al. An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites. International Journal of Mechanical Sciences, 2020,184(105818):1-13
    [28] Hayes RL, Gregory H, Michael O, et al. Prediction of dislocation nucleation during nanoindentation of Al3Mg by the orbital-free density functional theory local quasicontinuum method. Philosophical Magazine Series 1, 2006,86(16):16
    [29] Zhang SY, Tsai LW. Extending Tsai-Hill and norris criteria to predict cracking direction in orthotropic materials. International Journal of Fracture, 1989,40(4):R101-R104
    [30] Dean G, Crocker L, Read B, et al. Prediction of de-formation and failure of rubber-toughened adhesive joints. International Journal of Adhesion and Adhesives, 2004,24(4):295-306
    [31] Lin C, Fatt MSH. Perforation of composite plates and sandwich panels under quasi-static and, projectile loading. Journal of Composite Materials, 2006,40(20):1801-1840
    [32] Morinière FD, Alderliesten RC, Sadighi M, et al. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate. Composite Structures, 2013,100:89-103
    [33] Wu QG, Wen HM, Qin Y, et al. Perforation of FRP laminates under impact by flat-nosed projectiles. Composites Part B (Engineering), 2012,43(2):221-227
  • 期刊类型引用(7)

    1. 杨元锐,李金金,许小刚,李宝宝. 高寒大温差超长钢筋混凝土板抗冲击荷载数值模拟研究. 混凝土. 2024(03): 160-164 . 百度学术
    2. 许卓,许沛尧,顾大卫,谭大鹏,李晖,闻邦椿. 局部涂覆约束层阻尼纤维金属层合板非线性振动特性. 机械工程学报. 2024(23): 216-235 . 百度学术
    3. 钱凯,谭鑫宇,李治,于晓辉. 高温下钢筋混凝土板抗冲击性能及其影响因素. 工程力学. 2023(01): 132-143+154 . 百度学术
    4. 郭志浩,何标,王虹. 体育拉力训练器拉伸最大阻尼力预估模型. 机械设计与制造. 2023(01): 232-236 . 百度学术
    5. 李朋潮,李晖,肖正洋,张海洋,王相平,韩清凯,周晋,官忠伟. 基于解析法的低速冲击下复材薄壁圆柱壳动力学建模研究. 中国科学:技术科学. 2023(01): 81-89 . 百度学术
    6. 李耘宇,彭瀚贤,石蜀雁,张智成. 纤维增强金属层合板低速冲击特性研究. 武汉理工大学学报. 2023(05): 8-15 . 百度学术
    7. 王寅凯,张兴权,左立生,张鹏,章艳,方进秀. 基于有限差分法薄板激光冲击响应的数值模拟. 力学学报. 2022(04): 1063-1074 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1216
  • HTML全文浏览量:  225
  • PDF下载量:  184
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-05-15
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回