EI、Scopus 收录
中文核心期刊

风力机翼型动态失速等离子体流动控制数值研究

张卫国, 史喆羽, 李国强, 杨永东, 黄明其, 白云卯

张卫国, 史喆羽, 李国强, 杨永东, 黄明其, 白云卯. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
引用本文: 张卫国, 史喆羽, 李国强, 杨永东, 黄明其, 白云卯. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
Citation: Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. DOI: 10.6052/0459-1879-20-090
张卫国, 史喆羽, 李国强, 杨永东, 黄明其, 白云卯. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678-1689. CSTR: 32045.14.0459-1879-20-090
引用本文: 张卫国, 史喆羽, 李国强, 杨永东, 黄明其, 白云卯. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678-1689. CSTR: 32045.14.0459-1879-20-090
Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. CSTR: 32045.14.0459-1879-20-090
Citation: Zhang Weiguo, Shi Zheyu, Li Guoqiang, Yang Yongdong, Huang Minqi, Bai Yunmao. NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678-1689. CSTR: 32045.14.0459-1879-20-090

风力机翼型动态失速等离子体流动控制数值研究

基金项目: 1) 风雷青年创新基金(PJD20190003);基础和前沿技术研究基金(PJD20190002)
详细信息
    作者简介:

    2) 李国强, 助理研究员, 主要研究方向: 旋翼空气动力学, 流动控制与测量. E-mail: CARDCL@126.com

    通讯作者:

    李国强

  • 中图分类号: O355

NUMERICAL STUDY ON DYNAMIC STALL FLOW CONTROL FOR WIND TURBINE AIRFOIL USING PLASMA ACTUATOR

  • 摘要: 针对动态失速引起的风力机翼型气动性能恶化的问题,本文基于动网格和滑移网格技术, 开展了大涡模拟数值计算研究,探索了非定常脉冲等离子体的动态流动控制机理. 结果表明,等离子体气动激励能够有效控制翼型动态失速, 改善平均和瞬态气动力,减小力矩负峰值和迟滞环面积. 压力分布在等离子体施加范围内出现了负压"凸起",上翼面吸力峰值明显增大.脉冲频率和占空比这两个非定常控制参数对流动控制影响显著,无因次脉冲频率为1.5时等离子体控制效果较好,占空比为0.8时即可接近连续工作模式下的气动收益. 翼型深失速状态,等离子体促使流动分离位置明显向后缘移动, 抵抗了大尺度动态失速涡的发生,分离涡结构破碎耗散、重新附着, 涡流影响范围减小; 浅失速状态,等离子体激励具有较强的剪切层操纵能力, 诱导了翼型边界层提前转捩,促进了与主流的动量掺混. 等离子体气动激励诱导出前缘附近贴体翼面"涡簇",起到了虚拟气动外形的作用.不同尺度、频域的动态涡结构与等离子体气动激励的非线性、强耦合作用导致了气动力/力矩的谐波振荡.
    Abstract: In order to solve the problem of aerodynamic performance deterioration caused by dynamic stall, based on the dynamic grid and sliding grid technology, the large eddy simulation numerical calculation is carried out, and the dynamic flow control mechanism of unsteady pulsed plasma is explored. The results show that the plasma aerodynamic actuator can effectively control the airfoil dynamic stall, improve the mean and transient aerodynamic forces, and reduce the negative peak value of the pitch moment and the area of the hysteresis loop. The negative pressure "bulge" appears in the plasma application areas, and the peak suction of the upper airfoil surface increases obviously. The two unsteady control parameters, pulsed frequency and duty cycle, have significant influence on the flow control. When the dimensionless pulsed frequency is 1.5, the plasma control effect is better, and when the duty cycle is 0.8, it is close to the aerodynamic benefits under the continuous working mode. In the deep stall state: the plasma impels the flow separation position to move backward obviously, which resists the occurrence of large-scale dynamic stall vortices. The structure of the separation vortices is broken, dissipated and reattached to the airfoil by the plasma, and the influence area of the vortices is reduced. In the light stall state: the plasma actuator has strong ability to control the shear layer, which induces the transition of the airfoil boundary layer in advance and promotes the momentum mixing with the main flow. The "vortex clusters" near the airfoil leading edge induced by plasma actuation play a role of virtual aerodynamic shape. The harmonic oscillation of aerodynamic force / moment is caused by the nonlinear and strong coupling effect between the dynamic vortex structure with different scales and frequencies and the plasma aerodynamic actuation.
  • [1] 陆夕云, 杨国伟, 庄礼贤. 大攻角下有限振幅俯仰飞行的非线性动稳定性分析. 空气动力学学报, 1999,17(2):177-182
    [1] ( Lu Xiyun, Yang Guowei, Zhuang Lixian. Nonlinear dynamic stability analysis for aircraft flying at high angles of attack. Acta Aerodynamica Sinica, 1999,17(2):177-182 (in Chinese))
    [2] Ebrahimi A, Movahhedi M. Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators. Energy Conversion & Management, 2017,146:96-106
    [3] Xu HY, Qiao CL, Ye ZY. Dynamic stall control on the wind turbine airfoil via a co-flow jet. Energies, 2016,9:429
    [4] 罗振兵, 夏智勋, 邓雄 等. 合成双射流及其流动控制技术研究进展. 空气动力学报, 2017,35(2):252-264
    [4] ( Luo Zhenbin, Xia Zhixun, Deng Xiong, et al. Research progress of dual synthetic jets and its flow control technology. Acta Aerodynamica Sinica, 2017,35(2):252-264 (in Chinese))
    [5] 赵国庆, 招启军, 顾蕴松 等. 合成射流对失速状态下翼型大分离流动控制的试验研究. 力学学报, 2015,47(2):351-355
    [5] ( Zhao Guoqing, Zhao Qijun, Gu Yunsong, et al. Experimental investigation of synthetic jet control on large flow separation of airfoil during stall. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):351-355 (in Chinese))
    [6] Heine B, Mulleners K, Joubert G, et al. Dynamic stall control by passive disturbance generators. AIAA Journal, 2013,51(9):2086-2097
    [7] Taylor K, Amitay M. Dynamic stall process on a finite span model and its control via synthetic jet actuators. Physics of Fluids, 2015,27(7):57-63
    [8] Taylor K, Leong CM, Amitay M. Load control on a dynamically pitching finite span wind turbine blade using synthetic jets. Wind Energy, 2015,18(10):1759-1775
    [9] Tran SA, Corson DA, Sahni O. Synthetic jet based active flow control of dynamic stall phenomenon on wind turbines under yaw misalignment. AIAA Paper 2014-0871, 2014
    [10] Lorber P, Berezin C, Scott M, et al. Compressible dynamic stall alleviation through high momentum blowing. Vertical Flight Library & Store, 2016,72(132):1-20
    [11] Visbal MR. Control of dynamic stall on a pitching airfoil using high-frequency actuation. AIAA Paper 2015-1267, 2015
    [12] Woo GTK, Glezer A. Transitory control of dynamic stall on a pitching airfoil. Notes on Numerical Fluid Mechanics & Multidisciplinary Design, 2010,108:3-18
    [13] Phan MK, Shin J. Numerical investigation of aerodynamic flow actuation produced by surface plasma actuator on 2D oscillating airfoil. Chinese Journal of Aeronautics, 2016,29(4):882-892
    [14] Cooney JA, Szlatenyi C. The development and demonstration of a plasma flow control system on a 20 kW wind turbine. AIAA Paper 2016-1302, 2016
    [15] 张兆顺, 崔桂香, 许春晓. 湍流理论与模拟. 北京: 清华大学出版社, 2005: 233-251
    [15] ( Zhang Zhaoshun, Cui Guixiang, Xu Chunxiao. Theory and Modeling of Turbulence. Beijing: Tsinghua University Press, 2005: 233-251(in Chinese))
    [16] 李钢. 等离子体流动控制机理及其应用研究. 北京: 中国科学院, 2008
    [16] ( Li Gang. Investigation of plasma flow control mechanism and its application. Beijing: Chinese Academy of Sciences, 2008 (in Chinese))
    [17] 李应红, 吴云. 等离子体激励抑制翼型失速分离的实验研究. 空气动力学学报, 2008,26(3):372-377
    [17] ( Li Yinghong, Wu Yun. Experimental investigation on airfoil stall separation suppression by plasma actuation. Acta Aerodynamica Sinica, 2008,26(3):372-377 (in Chinese))
    [18] Mukherjee S, Roy S. Enhancement of lift and drag characteristics of an oscillating airfoil in deep dynamic stall using plasma actuation. AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012
    [19] Suzen YB, Huang PJ, Jacob JD, Numerical simulations of plasma based flow control applications. AIAA Paper 2005-4633, 2005
    [20] Ramsay R, Hoffman M. Effects of grit roughness and pitch oscillations on the S809 airfoil. [NREL/TP-442-7817]. Columbus: The Ohio State University, 1995
    [21] Meng XS, Hu HY, Yan X, et al. Lift Improvements using duty-cycled plasma actuation at low Reynolds numbers. Aerospace Science & Technology, 2018,72:123-133
    [22] Whalley RD, Kwing-So C. The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. Journal of Fluid Mechanics, 2012,703(1):192-203
    [23] 李峰, 高超, 吕哲 等. 等离子体气动激励近壁区密度场的时空演化特性. 中国科学: 技术科学, 2018,48(10):1122-1131
    [23] ( Li Feng, Gao Chao, Lü Zhe, et al. The spatial and temporal evolution characteristics of the density field near wall region actuated by plasma. Sci Sin Tech, 2018,48(10):1122-1131 (in Chinese))
    [24] Jiménez J. Coherent structures in wall-bounded turbulence. Journal of Fluid Mechanics, 842, P1. doi: 10.1017/jfm.2018.144
    [25] 杨鹤森, 赵光银, 梁华 等. 翼型动态失速影响因素及流动控制研究进展. 航空学报, 2020,41:023605
    [25] ( Yang Hesen, Zhao Guangyin, Liang Hua, et al. Research progress and influence factors of airfoil dynamic stall flow control. Acta Aeronautica et Astronautica Sinica, 2020,41:023605 (in Chinese))
    [26] Bomphrey RJ, Nakata T, Phillips N, et al. Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature, 2017,544(7648):92-95
    [27] Feng LH, Choi KS, Wang JJ. Flow control over an airfoil using virtual Gurney flaps. Journal of Fluid Mechanics, 2015,767:595-626
    [28] Motta V, Malzacher L, Peitsch D. Numerical investigation of virtual control surfaces for aeroelastic control on compressor blades. Journal of Fluids & Structures, 2018,81(8):617-637
    [29] Zhang PF, Yan B, Liu AB, et al. Numerical simulation on plasma circulation control airfoil. AIAA Journal, 2010,48(10):2213-2226
    [30] 冯立好, 王晋军, Choi, 等. 等离子体环量控制翼型增升的实验研究. 力学学报, 2013,45(6):815-821
    [30] ( Feng Lihao, Wang Jinjun, Choi Kwing-So, et al. Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(6):815-821 (in Chinese))
    [31] 李应红, 梁华, 马清源 等. 脉冲等离子体气动激励抑制翼型吸力面流动分离的实验. 航空学报, 2008,29(6):1429-1435
    [31] ( Li Yinghong, Liang Hua, Ma Qingyuan, et al. Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation. Acta Aeronautica Et Astronautica Sinica, 2008,29(6):1429-1435 (in Chinese))
    [32] Xue M, Gao C, Liu F, et al. Vortex of duty-cycled flow induced by dielectric-barrier-discharge plasma in quiescent air. AIAA Paper 2018-1296, 2018
    [33] Abdollahzadeh M, Páscoa J, Oliveira PJ. Comparison of DBD plasma actuators flow control authority in different modes of actuation. Aerospace Science & Technology, 2018,78:183-196
    [34] 刘晶昌, 徐建中, 郑敏. 环量控制翼型动态失速特性研究. 工程热物理学报, 1999,20(1):30-35
    [34] ( Liu Jingchang, Xu Jianzhong, Zheng Min. Some dynamic stall properties of an oscillating circulation control airfoil. Journal of Engineering Thermophysics, 1999,20(1):30-35 (in Chinese))
    [35] 李国强, 常智强, 张鑫 等. 翼型动态失速等离子体流动控制试验. 航空学报, 2018,39(8):122111
    [35] ( Li Guoqiang, Chang Zhiqiang, Zhang Xin, et al. Experimental investigation on flow control of airfoil dynamic stall using plasma actuator. Acta Aeronautica et Astronautica Sinica, 2018,39(8):122111 (in Chinese))
    [36] Hand B, Kelly G, Cashman A. Numerical simulation of a vertical axis wind turbine airfoil experiencing dynamic stall at high Reynolds numbers. Computers & Fluids, 2017,149:12-30
    [37] 王清, 招启军, 赵国庆. 旋翼翼型动态失速流场特性PIV试验研究及L-B模型修正. 力学学报, 2014,46(4):631-634
    [37] ( Wang Qing, Zhao Qijun, Zhao Guoqing. PIV experiments on flowfield characteristics of rotor airfoil dynamic stall and modifications of L-B model. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(4):631-634 (in Chinese))
    [38] 孟宣市, 王健磊. 不同形式等离子体激励对细长体分离涡的控制. 空气动力学学报, 2013,31(5):647-651
    [38] ( Meng Xuanshi, Wang Jianlei. Flow control over a slender conical forebody by different plasma actuations. Acta Aerodynamica Sinica, 2013,31(5):647-651 (in Chinese))
    [39] Zhou Y, Bai HL, et al. Recent advances in active control of turbulent boundary layers. Science China (Physics, Mechanics & Astronomy), 2011,54(7):1289-1295
    [40] 沈露予, 陆昌根. 前缘曲率变化对平板边界层感受性问题的影响. 物理学报, 2018, 67(18): 184703-1-8
    [40] ( Shen Luyu, Lu Changgen.. Effect of leading-edge curvature variation on flat-plate boundary-layer receptivity. Acta Phys. Sin., 2018, 67(18): 184703-1-8 (in Chinese))
    [41] Ioannou V, Laizet S. Numerical investigation of plasma-controlled turbulent jets for mixing enhancement. International Journal of Heat & Fluid Flow, 2018,70:193-205
    [42] Sujar-Garrido P, Benard N, Moreau E, et al. Active control by surface dielectric barrier discharge actuator of a reattached shear layer// Instability and Control of Massively Separated Flows. Springer International Publishing, 2015: 189-194
  • 期刊类型引用(12)

    1. 马志明,张鑫. 等离子体合成射流激励器诱导流场特性研究. 力学学报. 2025(02): 380-387 . 本站查看
    2. 李国强,常智强,张鑫,马志明,王畅,易仕和. 旋翼翼型动态失速非定常介质阻挡放电流动控制研究. 空气动力学学报. 2024(05): 64-71 . 百度学术
    3. 王丹,王骥飞,秦紫阳,刘苏瑶. 翼型外形与激励参数对等离子体流动控制的影响. 工程热物理学报. 2024(09): 2656-2670 . 百度学术
    4. 张鹏,程日新,李永宏,孙毅刚. 仿生人字形沟槽阵列控制翼型失速的数值研究. 航空动力学报. 2024(11): 327-337 . 百度学术
    5. 张鑫,王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望. 力学学报. 2023(02): 285-298 . 本站查看
    6. 陈杰,宗豪华,宋慧敏,梁华,刘诗敏,方子淇. 等离子体电磁干扰下圆柱绕流壁面压力信号AI实时降噪. 实验流体力学. 2023(04): 59-65 . 百度学术
    7. 李国强,宋奎辉,易仕和,张卫国,杨永东,袁明川,吴霖鑫. 基于后缘小翼的翼型反流动态失速主动控制试验研究. 力学学报. 2023(11): 2453-2467 . 本站查看
    8. 王同光,田琳琳,钟伟,王珑,朱呈勇. 风能利用中的空气动力学研究进展Ⅰ:风力机气动特性. 空气动力学学报. 2022(04): 1-21 . 百度学术
    9. 黄广靖,戴玉婷,杨超. 低雷诺数俯仰振荡翼型等离子体流动控制. 力学学报. 2021(01): 136-155 . 本站查看
    10. 钱宇,蒋皓. 基于动网格技术的机翼动态失速仿真分析. 科学技术与工程. 2021(15): 6501-6505 . 百度学术
    11. 陈国孝,刘喆,邵传平. 旋转振荡板尾流的控制研究. 力学学报. 2021(07): 1856-1875 . 本站查看
    12. 阳鹏宇,张鑫,赖庆仁,车兵辉,陈磊. 机翼尺度效应对等离子体分离流动控制特性的影响. 力学学报. 2021(12): 3321-3330 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  1433
  • HTML全文浏览量:  277
  • PDF下载量:  158
  • 被引次数: 20
出版历程
  • 收稿日期:  2020-03-19
  • 刊出日期:  2020-12-09

目录

    /

    返回文章
    返回