EI、Scopus 收录
中文核心期刊

La30Ce30Al15Co25金属玻璃应力松弛行为

陈迎红, 王云江, 乔吉超

陈迎红, 王云江, 乔吉超. La30Ce30Al15Co25金属玻璃应力松弛行为[J]. 力学学报, 2020, 52(3): 740-748. DOI: 10.6052/0459-1879-20-013
引用本文: 陈迎红, 王云江, 乔吉超. La30Ce30Al15Co25金属玻璃应力松弛行为[J]. 力学学报, 2020, 52(3): 740-748. DOI: 10.6052/0459-1879-20-013
Chen Yinghong, Wang Yunjiang, Qiao Jichao. STRESS RELAXATION OF La30Ce30Al15Co25 METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748. DOI: 10.6052/0459-1879-20-013
Citation: Chen Yinghong, Wang Yunjiang, Qiao Jichao. STRESS RELAXATION OF La30Ce30Al15Co25 METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748. DOI: 10.6052/0459-1879-20-013
陈迎红, 王云江, 乔吉超. La30Ce30Al15Co25金属玻璃应力松弛行为[J]. 力学学报, 2020, 52(3): 740-748. CSTR: 32045.14.0459-1879-20-013
引用本文: 陈迎红, 王云江, 乔吉超. La30Ce30Al15Co25金属玻璃应力松弛行为[J]. 力学学报, 2020, 52(3): 740-748. CSTR: 32045.14.0459-1879-20-013
Chen Yinghong, Wang Yunjiang, Qiao Jichao. STRESS RELAXATION OF La30Ce30Al15Co25 METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748. CSTR: 32045.14.0459-1879-20-013
Citation: Chen Yinghong, Wang Yunjiang, Qiao Jichao. STRESS RELAXATION OF La30Ce30Al15Co25 METALLIC GLASS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 740-748. CSTR: 32045.14.0459-1879-20-013

La30Ce30Al15Co25金属玻璃应力松弛行为

基金项目: 1)国家自然科学基金(51971178), 陕西省自然科学基金(2019JM-344), 中央高校基本科研业务费专项资金(3102019ghxm007, 3102017JC01003), 西北工业大学硕士研究生创意创新种子基金(ZZ2019014), 非线性力学国家重点实验室开放基金(LNM201911)资助项目
详细信息
    通讯作者:

    2)乔吉超, 教授, 主要研究方向: 金属玻璃的黏弹性力学行为. E-mail: qjczy@nwpu.edu.cn

  • 中图分类号: O344.5,O344.4

STRESS RELAXATION OF La30Ce30Al15Co25 METALLIC GLASS

  • 摘要: 作为潜在的工程材料, 金属玻璃在材料科学和凝聚态物理等领域引起广泛的研究兴趣. 金属玻璃结构与性能的关系表明, 金属玻璃的动态非均匀性与其黏弹性和塑性紧密相关. 然而, 宏观应力松弛行为与动态弛豫之间的物理图像并不清晰. 与传统金属材料不同, 金属玻璃的变形机理非常复杂. 应力松弛是一种表征玻璃体系黏弹性和塑性变形机制的有效手段, 从而探索结构和动态非均匀性. 本研究以La30Ce30Al15Co25金属玻璃为模型体系, 在较宽的温度窗口研究了其应力松弛行为. 研究结果表明, 与传统金属玻璃不同, La30Ce30Al15Co25金属玻璃具有明显的β弛豫行为. 基于Kohlarausch-Willams-Watts (KWW)方程的分析表明, 金属玻璃应力松弛为动态不均匀过程; 热动力学分析发现La30Ce30Al15Co25金属玻璃应力松弛存在显著的双阶段行为, 即从高应力条件下应力驱动为主导的松弛行为, 向低应力下热激活为主导的松弛行为发生转变. 通过激活能谱模型分析表明, 应力松弛单元的激活并非均匀, 而是存在能量上的起伏, 金属玻璃对于外力响应是一个渐进过程, 具有动力学不均匀性. 本研究进一步构建了金属玻璃的结构和动态非均匀性之间的关联, 为研究金属玻璃的α弛豫和β弛豫提供了强有力的支撑.
    Abstract: Metallic glass is a well-known engineering material that has been attracting tremendous research interest in materials science and condense matter physics. Early studies of the properties and structures of the metallic glasses showed that the dynamic heterogeneity is closely linked to the viscoelasticity and plasticity of metallic glasses. However, the physical landscape between the macroscopic stress relaxation behavior and the mechanical relaxation is still obscure. Different from the deformation mechanism of their crystalline counterparts, the deformation mechanism of metallic glasses is more complicated. To fully understand the mechanical properties of metallic glass, it is necessary to ascertain the structural characteristics of different spatial scales of metallic glass and evolution of structural characteristics with time. The significant importance is the connection between the macroscopic stress relaxation behavior and the dynamic mechanical relaxations (β relaxation, or α relaxation) in metallic glasses. Stress relaxation is a robust technique to characterize the viscoelastic and plastic mechanisms in glasses which can reflect their structural and dynamic heterogeneities. In the current research, La30Ce30Al15Co25 metallic glass was used as a model system, dynamic mechanical processes and stress relaxation behavior were studied. Compared with other traditional metallic glasses, La30Ce30Al15Co25 metallic glass shows a pronounced β relaxation process. The analysis based on the Kohlarausch-Willams-Watts (KWW) equation suggests that the stress relaxation process of metallic glass is a heterogeneous dynamic process. We observed an unusual two-stage stress relaxation phenomenon, consisting of the fast stress-driven event and the slow thermally activated event. The two-stage stress relaxation behavior is attributed the stress-driven event and thermally activated event to short-range atomic rearrangement, and long-range atomic diffusion, respectively. In addition, the analysis of the activation energy spectrum shows that the activation of the stress relaxation unit is not uniform, which corresponds to fluctuations in energy. This research is a step towards building a bridge linking the structural and dynamic heterogeneity of metallic glasses, and strongly supports the physical scenario of β to α relaxation.
  • 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 177-351
    (Wang Weihua.The nature and characteristics of amorphous mater. Progress in Physics, 2013, 33(5): 177-351 (in Chinese))
    Wang WH.The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656
    Qiao JC, Wang Q, Pelletier JM, et al.Structural heterogeneities and mechanical behavior of amorphous alloys. Progress in Materials Science, 2019, 104: 250-329
    Wang WH.Dynamic relaxations and relaxation-property relationships in metallic glasses. Progress in Materials Science, 2019, 106: 100561
    管鹏飞, 王兵, 吴义成等. 不均匀性:非晶合金的灵魂. 物理学报, 2017, 66(17): 176112-176112
    (Guan Pengfei, Wang Bin, Wu Yicheng, Heterogeneity: The soul of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176112-176112 (in Chinese))
    郝奇, 乔吉超, Pelletier JM.锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报, 2020, 52(2): 360-368
    (Hao Qi, Qiao Jichao, Pelletier JM.Dynamic relaxation characteristics and high temperature flow behavior of Zr-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 360-368 (in Chinese))
    Zhao LZ, Xue RJ, Li YZ, et al.Revealing localized plastic flow in apparent elastic region before yielding in metallic glasses. Journal of Applied Physics, 2015, 118(24): 244901
    史荣豪, 肖攀, 杨荣. 基于原子体积场拉普拉斯算子对金属玻璃剪切转变区的预测. 力学学报, 2020, 52(2): 369-378
    (Shi Ronghao, Xiao Pan, Yang Rong.Prediction of shear transformation zones in metallic glasses based on laplacian of atomic volume. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 369-378 (in Chinese))
    Yang XS, Wang YJ, Zhai HR, et al.Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations. Journal of the Mechanics and Physics of Solids, 2016, 94: 191-206
    Yang XS, Wang YJ, Wang GY, et al, Time-, stress-, and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations. Acta Materialia, 2016, 108: 252-263
    王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 303-317
    (Wang Yunjiang, Wei Dan, Han Dong, et al.Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese))
    Wang Z, Sun BA, Bai HY, et al.Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications, 2014, 5: 5823
    Bobrov OP, Laptev SN, Khonik VA.Stress relaxation in an Zr$_{52.5}$Ti$_{5}$Cu$_{17.9}$Ni$_{14.6}$Al$_{10}$ bulk metallic glass. Physics of the Solid State, 2004, 46(3): 470-473
    Jiao W, Sun BA, Wen P, et al.Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Applied Physics Letters, 2013, 103(8): 081904
    Lu Z, Wang WH, Bai HY.Classification of metallic glasses based on structural and dynamical heterogeneities by stress relaxation. Science China Materials, 2015, 58(2): 98-105
    Wu YC, Wang B, Hu YC, et al.The critical strain - a crossover from stochastic activation to percolation of flow units during stress relaxation in metallic glass. Scripta Materialia, 2017, 134: 75-79
    Luo P, Li M, Jiang H, et al.Temperature dependent evolution of dynamic heterogeneity in metallic glass. Journal of Applied Physics, 2017, 121(13): 135104
    Luo P, Wen P, Bai HY, et al.Relaxation decoupling in metallic glasses at low temperatures. Physical Review Letters, 2017, 118(22): 225901
    Li YZ, Zhao LZ, Wang C, et al.Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses. The Journal of Chemical Physics, 2015, 143(4): 041104
    Qiao JC, Wang YJ, Zhao LZ, et al.Transition from stress-driven to thermally activated stress relaxation in metallic glasses. Physical Review B, 2016, 94(10): 104203
    Lu Z, Shang B, Sun Y, et al.Revealing $\beta $-relaxation mechanism based on energy distribution of flow units in metallic glass. The Journal of Chemical Physics, 2016, 144(14): 144501
    Li R, Pang S, Ma C, et al.Influence of similar atom substitution on glass formation in (La-Ce)-Al-Co bulk metallic glasses. Acta Materialia, 2007, 55(11): 3719-3726
    Berthier L, Biroli G, Bouchaud JP, et al.Dynamical heterogeneities in glasses, colloids and granular media. OUP Oxford, 2011
    Gibbs MRJ, Evetts JE, Leake JA.Activation energy spectra and relaxation in amorphous materials. Journal of Materials Science, 1983, 18(1): 278-288
    Qiao JC, Pelletier JM.Dynamic mechanical relaxation in bulk Metallic glasses: A review. Journal of Materials Science & Technology, 2014, 30(6): 523-545
    Zhang P, Maldonis JJ, Liu Z, et al.Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nature Communications, 2018, 9(1): 1129
    Missel PJ, Mazer N, Benedek G, et al.Thermodynamic analysis of the growth of sodium dodecyl sulfate micelles. The Journal of Physical Chemistry, 1980, 84(9): 1044-1057
    Chen H.On mechanisms of structural relaxation in a Pd$_{48}$Ni$_{32}$P$_{20}$ glass. Journal of Non-Crystalline Solids, 1981, 46(3): 289-305
    Song L, Xu W, Huo J, et al.Two-step relaxations in metallic glasses during isothermal annealing. Intermetallics, 2018, 93: 101-105
    Wang Q, Pelletier JM, Blandin JJ, et al.Mechanical properties over the glass transition of Zr$_{41.2}$Ti$_{13.8}$Cu$_{12.5}$Ni$_{10}$Be$_{22.5}$ bulk metallic glass. Journal of Non-Crystalline Solids, 2005, 351(27-29): 2224-2231
    Lee KS, Jun HJ, Pauly S, et al.Thermomechanical characterization of Cu$_{47.5}$Zr$_{47.5}$Al$_{5}$ bulk metallic glass within the homogeneous flow regime. Intermetallics, 2009, 17(1-2): 65-71
    Mei JN, Soubeyroux JL, Blandin JJ, et al.Homogeneous deformation of Ti$_{41.5}$Cu$_{37.5}$Ni$_{7.5}$Zr$_{2.5}$Hf$_{5}$Sn$_{5}$Si$_{1}$ bulk metallic glass in the supercooled liquid region. Intermetallics, 2011, 19(1): 48-53
    Qiao JC, Chen YH, Casalini R, et al.Main $\alpha $ relaxation and slow $\beta$ relaxation processes in a La$_{30}$Ce$_{30}$Al$_{15}$Co$_{25}$ metallic glass. Journal of Materials Science & Technology, 2019, 35(6): 982-986
    Herrero-Gómez C, Samwer K.Stress and temperature dependence of the avalanche dynamics during creep deformation of metallic glasses. Scientific Reports, 2016, 6: 33503
    Jiao W, Wen P, Peng HL, et al.Evolution of structural and dynamic heterogeneities and activation energy distribution of deformation units in metallic glass. Applied Physics Letters, 2013, 102(10): 101903
    王峥, 汪卫华. 非晶合金中的流变单元. 物理学报, 2017, 66: 176103
    (Wang Zheng, Wang Weihua.Flow unit model in metallic glasses. Acta Physica Sinica, 2017, 66: 176103 (in Chinese))
  • 期刊类型引用(4)

    1. 乔吉超,张浪渟,童钰,吕国建,郝奇,陶凯. 基于微观结构非均匀性的非晶合金力学行为. 力学进展. 2022(01): 117-152 . 百度学术
    2. 徐宗睿,郝奇,张浪渟,乔吉超. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报. 2022(06): 1590-1600 . 本站查看
    3. 张浪渟,乔吉超. 物理时效和循环加载下高熵金属玻璃的弛豫行为. 中国科学:物理学 力学 天文学. 2021(08): 78-87 . 百度学术
    4. 张浪渟,Vitaly A Khonik,乔吉超. 铜基非晶合金热效应和剪切模量变化起源. 力学学报. 2020(06): 1709-1718 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1508
  • HTML全文浏览量:  297
  • PDF下载量:  130
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-01-09
  • 刊出日期:  2020-06-09

目录

    /

    返回文章
    返回