EI、Scopus 收录
中文核心期刊

非晶态固体的结构可以决定性能吗?

王云江, 魏丹, 韩懂, 杨杰, 蒋敏强, 戴兰宏

王云江, 魏丹, 韩懂, 杨杰, 蒋敏强, 戴兰宏. 非晶态固体的结构可以决定性能吗?[J]. 力学学报, 2020, 52(2): 303-317. DOI: 10.6052/0459-1879-19-368
引用本文: 王云江, 魏丹, 韩懂, 杨杰, 蒋敏强, 戴兰宏. 非晶态固体的结构可以决定性能吗?[J]. 力学学报, 2020, 52(2): 303-317. DOI: 10.6052/0459-1879-19-368
Wang Yunjiang, Wei Dan, Han Dong, Yang Jie, Jiang Mingqiang, Dai Lanhong. DOES STRUCTURE DETERMINE PROPERTY IN AMORPHOUS SOLIDS?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317. DOI: 10.6052/0459-1879-19-368
Citation: Wang Yunjiang, Wei Dan, Han Dong, Yang Jie, Jiang Mingqiang, Dai Lanhong. DOES STRUCTURE DETERMINE PROPERTY IN AMORPHOUS SOLIDS?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317. DOI: 10.6052/0459-1879-19-368
王云江, 魏丹, 韩懂, 杨杰, 蒋敏强, 戴兰宏. 非晶态固体的结构可以决定性能吗?[J]. 力学学报, 2020, 52(2): 303-317. CSTR: 32045.14.0459-1879-19-368
引用本文: 王云江, 魏丹, 韩懂, 杨杰, 蒋敏强, 戴兰宏. 非晶态固体的结构可以决定性能吗?[J]. 力学学报, 2020, 52(2): 303-317. CSTR: 32045.14.0459-1879-19-368
Wang Yunjiang, Wei Dan, Han Dong, Yang Jie, Jiang Mingqiang, Dai Lanhong. DOES STRUCTURE DETERMINE PROPERTY IN AMORPHOUS SOLIDS?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317. CSTR: 32045.14.0459-1879-19-368
Citation: Wang Yunjiang, Wei Dan, Han Dong, Yang Jie, Jiang Mingqiang, Dai Lanhong. DOES STRUCTURE DETERMINE PROPERTY IN AMORPHOUS SOLIDS?[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317. CSTR: 32045.14.0459-1879-19-368

非晶态固体的结构可以决定性能吗?

基金项目: 1)国家自然科学基金(11672299);国家自然科学基金(11972345);国家自然科学基金(11790292);国家重点研发计划(2017YFB0702003);国家重点研发计划(2017YFB0701502);中国科学院青年创新促进会(2017025)
详细信息
    通讯作者:

    王云江

  • 中图分类号: O344.4

DOES STRUCTURE DETERMINE PROPERTY IN AMORPHOUS SOLIDS?

  • 摘要: 晶态固体的力学性能与塑性变形主要由结构缺陷, 比如位错的运动决定. 而在非晶态固体中结构如何决定性能, 仍然是固体力学、材料学和凝聚态物理学共同关心但尚未解决的核心问题之一.传统材料学研究的经典范式为"结构决定性能". 遵循这一信条, 已经有大量的实验表征与理论、模拟研究, 尝试将非晶态固体的某种结构特征与性能建立一一对应关系. 但是, 科学界对于非晶固体结构-性能关系成立与否, 以及背后隐藏的规律知之甚少. 本文针对非晶态固体的变形机制以及其微结构特征, 基于分子动力学模拟, 定量评估短程简单结构与中长程复杂结构在决定非晶态固体动力学性能方面的效用. 通过海量抽样每种具体玻璃结构的激活能(标识激发难易程度), 尝试将结构参数与激活能建立定量关系, 从而揭示出非晶态固体结构-性能关系的隐藏主控因素为结构的空间关联, 受限比几何结构本身更关键. 只有某种结构在空间上呈现亚纳米级的空间关联长度, 这种完备结构才有可能有效地决定非晶态固体的力学性能, 而短程简单结构则无效. 进一步, 给出了评价非晶态固体结构预测性能有效性的普适定量方法, 为建立广义无序物质的结构-性能关系提供了筛选准则.
    Abstract: The mechanical properties and plastic deformation mechanisms of crystalline solids are mainly determined by their structural defects, e.g., the motion of the versatile dislocations. However, how structures determine properties in non-crystalline solids remains as a major unsolved issue in both solid mechanics, materials sciences, as well as condensed matter physics. Structure determines property is the traditional paradigm of materials science. Following this rule, there are vast experimental characterizations, theoretical studies, and computer simulations appeared in the literature, trying to establish a one-to-one correspondence between a specific structural feature with a unique dynamic property in the general amorphous solids. However, up to date, people gain very little understanding of the structure-property relationships in amorphous solids, not to mention whether there exists any hidden rule behind the structure-property relationships. For this purpose, we focus on the unique features of deformations mechanisms in amorphous solids as well as their microstructure characteristics. Thorough proper samplings of the activation energies of the excitation of these structural parameters by an advanced molecular dynamics technique, we are trying to quantitatively assess the validity of simple short-range structures and medium- to long-range structures in determination of their properties. This is done by examination of the possible correlation between parameters of structures with their activation energies, which implies the level of difficulty in activation of the events. By this we find that the hidden governing rule of structure-property relationship in amorphous solids involves a critical role of spatial autocorrelation length of the specific structural parameter. Constraint is more relevant than geometry itself. If only one structural descriptor presents spatial autocorrelation length up to sub nanometer level, it might effectively predict the mechanical property of amorphous solids; otherwise, the short-range local structures lacking such correlation length fails to predict property. Furthermore, we present a general metric to assess the utilities of structures in determining functions of the amorphous solids, which can be served as a screening rule to seeking for effective structures in amorphous solids.
  • [1] Wei D, Yang J, Jiang MQ , et al. Assessing the utility of structure in amorphous materials. J Chem Phys, 2019,150:114502
    [2] Cai W, Nix WD. Imperfections in Crystalline Solids. Cambridge University Press, 2016
    [3] Kocks UF, Argon AS, Ashby MF . Thermodynamics and kinetics of slip. Prog Mater Sci, 1975,19:1-278
    [4] Argon A. Strengthening Mechanisms in Crystal Plasticity. vol. 4. Oxford : Oxford University Press on Demand, 2008
    [5] Caillard D, Martin JL . Thermally Activated Mechanisms in Crystal Plasticity. vol. 8. New York: Elsevier Ltd, 2003
    [6] Frenkel J . Zur Theorie der Elastizit?tsgrenze und der Festigkeit kristallinischer K?rper. Zeitschrift Für Phys, 1926,37:572-609
    [7] Qiao JC, Wang Q, Pelletier JM , et al. Structural heterogeneities and mechanical behavior of amorphous alloys. Prog Mater Sci, 2019,104:250-329
    [8] Schuh CA, Hufnagel TC, Ramamurty U . Mechanical behavior of amorphous alloys. Acta Mater, 2007,55:4067-4109
    [9] Hufnagel TC, Schuh CA, Falk ML . Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Mater, 2016,109:375-393
    [10] Nicolas A, Ferrero EE, Martens K , et al. Deformation and flow of amorphous solids: a review of mesoscale elastoplastic models. Rev Mod Phys, 2018,90:045006
    [11] Cheng YQ, Ma E . Atomic-level structure and structure-property relationship in metallic glasses. Prog Mater Sci, 2010,56:379-473
    [12] Cheng YQ, Ma E, Sheng HW . Atomic level structure in multicomponent bulk metallic glass. Phys Rev Lett, 2009,102:245501
    [13] Cheng YQ, Cao AJ, Sheng HW , et al. Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Mater, 2008,56:5263-5275
    [14] Cheng YQ, Sheng HW, Ma E . Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B, 2008,78:14207
    [15] Sheng HW, Luo WK, Alamgir FM , et al. Atomic packing and short-to-medium-range order in metallic glasses. Nature, 2006,439:419-425
    [16] Zhu F, Hirata A, Liu P , et al. Correlation between local structure order and spatial heterogeneity in a metallic glass. Phys Rev Lett, 2017,119:215501
    [17] Hirata A, Guan P, Fujita T , et al. Direct observation of local atomic order in a metallic glass. Nat Mater, 2011,10:28-33
    [18] Liu XJ, Xu Y, Hui X , et al. Metallic liquids and glasses: Atomic order and global packing. Phys Rev Lett, 2010,105:155501
    [19] Liu XJ, Wang SD, Wang H , et al. Local structural mechanism for frozen-in dynamics in metallic glasses. Phys Rev B, 2018,97:134107
    [20] Han D, Wei D, Yang J , et al. Atomistic structural mechanism for the glass transition: Entropic contribution. Phys Rev B, 2020,101:014113
    [21] Tanaka H, Tong H, Shi R , et al. Revealing key structural features hidden in liquids and glasses. Nat Rev Phys, 2019,1:333-348
    [22] Royall CP, Williams SR . The role of local structure in dynamical arrest. Phys Rep, 2015,560:1-75
    [23] Hu YC, Li YW, Yang Y , et al. Configuration correlation governs slow dynamics of supercooled metallic liquids. Proc Natl Acad Sci U S A, 2018,115:6375-6380
    [24] Tong H, Tanaka H . Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys Rev X, 2018,8:011041
    [25] Sastry S, Debenedetti PG, Stillinger FH . Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature, 1998,393:554-557
    [26] Debenedetti PG, Stillinger FH . Supercooled liquids and the glass transition. Nature, 2001,410:259-267
    [27] Stillinger FH . Energy Landscapes, Inherent Structures, and Condensed-Matter Phenomena. Princeton: Princeton University Press, 2016
    [28] Wales D. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses. Cambridge: Cambridge University Press, 2004
    [29] Ashby MF . A first report on deformation-mechanism maps. Acta Metall, 1972,20:887-897
    [30] Zhu T, Li J . Ultra-strength materials. Prog Mater Sci, 2010,55:710-757
    [31] Yang XS, Wang YJ, Wang GY , et al. Time, stress, and temperature-dependent deformation in nanostructured copper: Stress relaxation tests and simulations. Acta Mater, 2016,108:252-263
    [32] Yang XS, Wang YJ, Zhai HR , et al. Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations. J Mech Phys Solids, 2016,94:191-206
    [33] Wang YJ, Gao GJ, Ogata S . Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys Rev B, 2013,88:115413
    [34] Wang YJ, Ishii A, Ogata S . Entropic effect on creep in nanocrystalline metals. Acta Mater, 2013,61:3866-3871
    [35] Wang YJ, Ishii A, Ogata S . Transition of creep mechanism in nanocrystalline metals. Phys Rev B, 2011,84:224102
    [36] Wang YJ, Ishii A, Ogata S . Grain size dependence of creep in nanocrystalline copper by molecular dynamics. Mater Trans, 2012,53:156-160
    [37] Hirata A, Kang LJ, Fujita T , et al. Geometric frustration of icosahedron in metallic glasses. Science, 2013,341:376-379
    [38] Ma J, Yang C, Liu X , et al. Fast surface dynamics enabled cold joining of metallic glasses. Sci Adv, 2019, 5: eaax7256
    [39] Spaepen F . A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall, 1977,25:407-415
    [40] Argon AS . Plastic deformation in metallic glasses. Acta Metall, 1979,27:47-58
    [41] Johnson WL, Samwer K . A universal criterion for plastic yielding of metallic glasses with a ($T/T_{g})^{2/3}$ temperature dependence. Phys Rev Lett, 2005,95:195501
    [42] Falk ML, Langer JS . Dynamics of viscoplastic deformation in amorphous solids. Phys Rev E, 1998,57:7192
    [43] Wang Z, Wang WH . Flow units as dynamic defects in metallic glassy materials. Natl Sci Rev, 2018,6:304-323
    [44] Ding J, Patinet S, Falk ML , et al. Soft spots and their structural signature in a metallic glass. Proc Natl Acad Sci, 2014,111:14052-14056
    [45] Widmer-Cooper A, Perry H, Harrowell P, Reichman DR . Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat Phys, 2008,4:711-715
    [46] Shintani H, Tanaka H . Universal link between the boson peak and transverse phonons in glass. Nat Mater, 2008,7:870-877
    [47] Jiang MQ, Dai LH . The "ension transformation zone'' model of amorphous alloys. Chinese Sci Bull, 2017,62:2346-2357
    [48] Guan P, Chen MW, Egami T . Stress-temperature scaling for steady-State flow in metallic glasses. Phys Rev Lett, 2010,104:205701
    [49] Wang YJ, Zhang M, Liu L , et al. Universal enthalpy-entropy compensation rule for the deformation of metallic glasses. Phys Rev B, 2015,92:174118
    [50] Cui B, Yang J, Qiao J , et al. Atomic theory of viscoelastic response and memory effects in metallic glasses. Phys Rev B, 2017,96:094203
    [51] Qiao JC, Wang YJ, Zhao LZ , et al. Transition from stress-driven to thermally activated stress relaxation in metallic glasses. Phys Rev B, 2016,94:104203
    [52] Ju JD, Atzmon M . A comprehensive atomistic analysis of the experimental dynamic-mechanical response of a metallic glass. Acta Mater, 2014,74:183-188
    [53] Lei TJ, Dacosta LR, Liu M , et al. Microscopic characterization of structural relaxation and cryogenic rejuvenation in metallic glasses. Acta Mater, 2019,164:165-170
    [54] Lei TJ , Rangel DaCosta L, Liu M, et al. Shear transformation zone analysis of anelastic relaxation of a metallic glass reveals distinct properties of $\alpha $ and $\beta $ relaxations. Phys Rev E, 2019,100:033001
    [55] Miyazaki N, Wakeda M, Wang YJ , et al. Prediction of pressure-promoted thermal rejuvenation in metallic glasses. Npj Comput Mater, 2016,2:16013
    [56] Pan J, Wang YX, Guo Q , et al. Extreme rejuvenation and softening in a bulk metallic glass. Nat Commun, 2018,9:560
    [57] Ketov SV, Sun YH, Nachum S , et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 2015,524:200-203
    [58] Ding G, Li C, Zaccone A , et al. Ultrafast extreme rejuvenation of metallic glasses by shock compression. Sci Adv, 2019, 5: aaw6249
    [59] Wang YJ, Jiang MQ, Tian ZL , et al. Direct atomic-scale evidence for shear-dilatation correlation in metallic glasses. Scr Mater, 2016,112:37-41
    [60] Jiang MQ, Wilde G, Dai LH . Shear band dilatation in amorphous alloys. Scr Mater, 2017,127:54-57
    [61] Guan P, Lu S, Spector MJB , et al. Cavitation in amorphous solids. Phys Rev Lett, 2013,110:185502
    [62] Greer AL, Cheng YQ, Ma E . Shear bands in metallic glasses. Mater Sci Eng R Reports, 2013,74:71-132
    [63] Wu ZW, Li MZ, Wang WH , et al. Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat Commun, 2015,6:6035
    [64] Wu ZW, Kob W, Wang WH , et al. Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt. Nat Commun, 2018,9:5334
    [65] Yang J, Wang YJ, Ma E , et al. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses. Phys Rev Lett, 2019,122:015501
    [66] Han D, Wei D, Yang J , et al. Structural atomistic mechanism for the glass transition entropic scenario. ArXiv: 190703695 2019
    [67] Zhang Y, Zhang F, Wang CZ , et al. Cooling rates dependence of medium-range order development in Cu$_{64.5}$Zr$_{35.5}$ metallic glass. Phys Rev B, 2015,91:064105
    [68] Yang X, Liu R, Yang M , et al. Structures of local rearrangements in soft colloidal glasses. Phys Rev Lett, 2016,116:238003
    [69] Wei D, Yang J, Jiang MQ , et al. Revisiting the structure-property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule. Phys Rev B, 2019,99:014115
    [70] Dyre JC . Colloquium: The glass transition and elastic models of glass-forming liquids. Rev Mod Phys, 2006,78:953
    [71] Pazmi?o Betancourt BA, Hanakata PZ, Starr FW , et al. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials. Proc Natl Acad Sci, 2015,112:2966-2971
    [72] Widmer-Cooper A, Harrowell P . Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys Rev Lett, 2006,96:185701
    [73] Ding J, Cheng YQ, Sheng H , et al. Universal structural parameter to quantitatively predict metallic glass properties. Nat Commun, 2016,7:13733
    [74] Fan Y, Iwashita T, Egami T . Evolution of elastic heterogeneity during aging in metallic glasses. Phys Rev E, 2014,89:062313
    [75] Dyre JC, Olsen NB, Christensen T . Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys Rev B, 1996,53:2171
    [76] Sun BA, Hu YC, Wang DP , et al. Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses. Acta Mater, 2016,121:266-276
    [77] Zylberg J, Lerner E , Bar-sinai Y, et al. Local thermal energy as a structural indicator in glasses. Proc Natl Acad Sci U S A, 2017,114:7289-7294
    [78] Fan Z, Ding J, Li QJ , et al. Correlating the properties of amorphous silicon with its flexibility volume. Phys Rev B, 2017,95:144211
    [79] Fan Y, Iwashita T, Egami T . Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material. Nat Commun, 2017,8:15417
    [80] Fan Y, Iwashita T, Egami T . How thermally activated deformation starts in metallic glass. Nat Commun, 2014,5:5083
    [81] Fan Y, Iwashita T, Egami T . Crossover from localized to cascade relaxations in metallic glasses. Phys Rev Lett, 2015,115:045501
    [82] Rodney D, Schuh C . Distribution of thermally activated plastic events in a flowing glass. Phys Rev Lett, 2009,102:235503
    [83] Rodney D, Schuh CA . Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique. Phys Rev B, 2009,80:184203
    [84] Wang YJ, Du JP, Shinzato S , et al. A free energy landscape perspective on the nature of collective diffusion in amorphous solids. Acta Mater, 2018,157:165-173
    [85] Patinet S, Vandembroucq D, Falk ML . Connecting local yield stresses with plastic activity in amorphous solids. Phys Rev Lett, 2016,117:045501
    [86] Xu B, Falk ML, Li JF , et al. Predicting Shear Transformation Events in Metallic Glasses. Phys Rev Lett, 2018,120:125503
    [87] Plimpton S . Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995,117:1-19
    [88] Mendelev MI, Kramer MJ, Ott RT , et al. Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys. Philos Mag, 2009,89:967-987
    [89] Nosé Shūichi . A molecular dynamics method for simulations in the canonical ensemble. Mol Phys, 1984,52:255-268
    [90] Hoover WG . Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A, 1985,31:1695-1697
    [91] Parrinello M, Rahman A . Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys, 1981,52:7182
    [92] Stukowski A . Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Model Simul Mater Sci Eng, 2010,18:015012
    [93] Wales DJ . Exploring Energy Landscapes. Annu Rev Phys Chem, 2018,69:401-425
    [94] Barkema GT, Mousseau N . Event-based relaxation of continuous disordered systems. Phys Rev Lett, 1996,77:4358
    [95] El-Mellouhi F, Mousseau N, Lewis LJ . Kinetic activation-relaxation technique: An off-lattice self-learning kinetic Monte Carlo algorithm. Phys Rev B, 2008,78:153202
    [96] Béland LK, Brommer P, El-Mellouhi F , et al. Kinetic activation-relaxation technique. Phys Rev E, 2011,84:46704
    [97] Mousseau N, Béland LK, Brommer P , et al. Following atomistic kinetics on experimental timescales with the kinetic Activation-Relaxation Technique. Comput Mater Sci, 2015,100:111-123
    [98] Wang N, Ding J, Yan F , et al. Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. Npj Comput Mater, 2018,4:19
    [99] Cubuk ED, Ivancic RJS, Schoenholz SS , et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science, 2017,358:1033-1037
    [100] Yu HB, Richert R, Samwer K . Structural Rearrangements Governing Johari-Goldstein Relaxations in Metallic Glass. Sci Adv, 2017,3:e1701577
    [101] Frank FC, Mott NF . Supercooling of liquids. Proc R Soc London Ser A Math Phys Sci, 1952,215:43-46
    [102] Cubuk ED, Schoenholz SS, Rieser JM , et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys Rev Lett, 2015,114:108001
    [103] Schoenholz SS, Cubuk ED, Sussman DM , et al. A structural approach to relaxation in glassy liquids. Nat Phys, 2016,12:469-471
    [104] Schoenholz SS, Cubuk ED, Kaxiras E , et al. The relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc Natl Acad Sci U S A, 2016,114:263-268
    [105] Ma X, Davidson ZS, Still T , et al. Heterogeneous Activation, Local Structure, and Softness in Supercooled Colloidal Liquids. Phys Rev Lett, 2019,122:028001
    [106] Wang Q, Jain A . A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. Nat Commun, 2019,10:5537
  • 期刊类型引用(15)

    1. 易梦丽,王驰,赖建平,李定骏,袁卫锋,余家欣. 退火处理对Pt基块体金属玻璃塑性动力学行为的影响. 力学学报. 2024(01): 173-182 . 本站查看
    2. 唐晓畅,邓杰仁,莫泳晖,孟令怡,姚小虎. 动态加载下非晶合金的塑性事件演化及非近邻相互作用. 中国科学:物理学 力学 天文学. 2024(05): 6-24 . 百度学术
    3. 段亚娟,徐宗睿,郝奇,H.Kato,乔吉超. Pd_(20)Pt_(20)Cu_(20)Ni_(20)P_(20)高熵非晶合金蠕变机理研究. 力学学报. 2024(10): 2913-2923 . 本站查看
    4. 乔吉超,张浪渟,童钰,吕国建,郝奇,陶凯. 基于微观结构非均匀性的非晶合金力学行为. 力学进展. 2022(01): 117-152 . 百度学术
    5. 徐宗睿,郝奇,张浪渟,乔吉超. 基于准点缺陷理论探索非晶合金蠕变机制. 力学学报. 2022(06): 1590-1600 . 本站查看
    6. 刘伟东,屈赫,屈华,杨松. 退火对Zr_(55)Al_(10)Ni_5Cu_(30)非晶合金晶化过程及压缩性能的影响. 材料热处理学报. 2022(08): 93-100 . 百度学术
    7. 郝奇,乔吉超. 基于微观结构非均匀性演化的非晶合金应力松弛动力学. 力学学报. 2022(11): 3058-3067 . 本站查看
    8. 邢磊,杜培培,龙跃. SiO_2/Al_2O_3对无机纤维微观结构及热稳定性的影响. 钢铁研究学报. 2021(01): 9-14 . 百度学术
    9. 蒋敏强,高洋. 金属玻璃的结构年轻化及其对力学行为的影响. 金属学报. 2021(04): 425-438 . 百度学术
    10. 王云江. 固体塑性实验室时间尺度的分子动力学模拟概述. 计算力学学报. 2021(03): 280-289 . 百度学术
    11. 张浪渟,乔吉超. 物理时效和循环加载下高熵金属玻璃的弛豫行为. 中国科学:物理学 力学 天文学. 2021(08): 78-87 . 百度学术
    12. 戴晓茹,赵君婕,俆秀瑕,刘涌,乔旭升,杜金成,樊先平. 利用分子动力学模拟玻璃结构与计算玻璃性能研究进展. 硅酸盐学报. 2021(12): 2691-2709 . 百度学术
    13. 郝奇,乔吉超,Jean-Marc Pelletier. 锆基非晶合金的动态弛豫机制和高温流变行为. 力学学报. 2020(02): 360-368 . 本站查看
    14. 陈迎红,王云江,乔吉超. La_(30)Ce_(30)Al_(15)Co_(25)金属玻璃应力松弛行为. 力学学报. 2020(03): 740-748 . 本站查看
    15. 张浪渟,Vitaly A Khonik,乔吉超. 铜基非晶合金热效应和剪切模量变化起源. 力学学报. 2020(06): 1709-1718 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  2732
  • HTML全文浏览量:  461
  • PDF下载量:  651
  • 被引次数: 22
出版历程
  • 收稿日期:  2019-12-23
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回