EI、Scopus 收录
中文核心期刊

任意斜裂纹转子的耦合振动研究

焦卫东, 蒋永华, 李刚, 蔡建程

焦卫东, 蒋永华, 李刚, 蔡建程. 任意斜裂纹转子的耦合振动研究[J]. 力学学报, 2020, 52(2): 533-543. DOI: 10.6052/0459-1879-19-292
引用本文: 焦卫东, 蒋永华, 李刚, 蔡建程. 任意斜裂纹转子的耦合振动研究[J]. 力学学报, 2020, 52(2): 533-543. DOI: 10.6052/0459-1879-19-292
Jiao Weidong, Jiang Yonghua, Li Gang, Cai Jiancheng. STUDY ON COUPLED VIBRATIONS OF ROTOR WITH AN ARBITRARY SLANT CRACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 533-543. DOI: 10.6052/0459-1879-19-292
Citation: Jiao Weidong, Jiang Yonghua, Li Gang, Cai Jiancheng. STUDY ON COUPLED VIBRATIONS OF ROTOR WITH AN ARBITRARY SLANT CRACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 533-543. DOI: 10.6052/0459-1879-19-292
焦卫东, 蒋永华, 李刚, 蔡建程. 任意斜裂纹转子的耦合振动研究[J]. 力学学报, 2020, 52(2): 533-543. CSTR: 32045.14.0459-1879-19-292
引用本文: 焦卫东, 蒋永华, 李刚, 蔡建程. 任意斜裂纹转子的耦合振动研究[J]. 力学学报, 2020, 52(2): 533-543. CSTR: 32045.14.0459-1879-19-292
Jiao Weidong, Jiang Yonghua, Li Gang, Cai Jiancheng. STUDY ON COUPLED VIBRATIONS OF ROTOR WITH AN ARBITRARY SLANT CRACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 533-543. CSTR: 32045.14.0459-1879-19-292
Citation: Jiao Weidong, Jiang Yonghua, Li Gang, Cai Jiancheng. STUDY ON COUPLED VIBRATIONS OF ROTOR WITH AN ARBITRARY SLANT CRACK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 533-543. CSTR: 32045.14.0459-1879-19-292

任意斜裂纹转子的耦合振动研究

基金项目: 1)国家自然科学基金资助项目(51575497)
详细信息
    通讯作者:

    焦卫东

  • 中图分类号: TH113.1

STUDY ON COUPLED VIBRATIONS OF ROTOR WITH AN ARBITRARY SLANT CRACK

  • 摘要: 对包含不同类型裂纹(横裂纹、横-斜裂纹以及任意斜裂纹)的转子的耦合振动进行研究,以揭示裂纹转子在不同方向上刚度参数的变化规律及其交叉耦合机理,特别是由此引发的振动特征. 对于包含不同类型裂纹的转子轴段,采用六自由度Timoshenko梁单元模型对其进行单元建模,并基于应变能理论推导计算柔度参数和刚度矩阵. 在此基础上, 采用纽马克-$\beta$数值算法求解裂纹转子的运动方程,获得裂纹转子在单故障或多故障激励(不平衡激励、扭转激励或不平衡激励加扭转激励)作用下的耦合振动响应,进而分析耦合振动谱特征. 与横裂纹和横-斜裂纹相比,任意斜裂纹使转子刚度矩阵的交叉耦合效应更显著,导致转子发生更强烈的弯-扭耦合甚至是纵-弯-扭耦合振动.无论是在不平衡激励还是扭转激励作用下, 弯曲振动与扭转振动幅度都更大. 而且,包含不同类型裂纹的转子的耦合振动特征频率,例如旋转基频与二倍频、扭转激励频率及其边带成分的幅值,对裂纹面方向角具有不同的敏感性. 所得的这些研究结果,可以为转子裂纹的特征参数辨识与诊断提供理论依据.
    Abstract: The coupled vibrations of rotor with different type of cracks were studied, including transverse crack, transverse-slant crack and arbitrary slant crack. It aims to reveal the variation rule of stiffness parameters in different directions, their cross-coupling mechanism and especially the feature of resulted vibrations of the cracked rotor. The rotor segment with different type of cracks, including transverse crack, transverse-slant crack and arbitrary slant crack, was respectively modeled using the Timoshenko beam element, considering all six degrees of freedom including longitudinal, bending and torsional directions. Flexibility coefficients and then stiffness matrix was derived, based on strain energy theory. On this basis, motion equation of the cracked rotor was solved by numerical algorithm `Newmark-beta' to obtain the time-domain response of coupled vibrations of the cracked rotor under different excitations by single or multiple faults such as unbalanced excitation, torsional excitation and combined excitation of unbalanced with torsional. The spectral characteristics of coupled vibrations were then analyzed. Compared to either transverse crack or transverse-slant crack, the stiffness matrix governed by arbitrary slant crack is more populated with additional cross coupled coefficients, and its cross coupling effect is more significant, which contributes to stronger coupled vibrations in bending-torsional direction or even longitudinal-bending-torsional direction. The amplitudes of both bending vibration and torsional vibration are larger than that at the situation of either transverse crack or transverse-slant crack, under the action of either unbalanced excitation or torsional excitation. Moreover, the characteristic frequencies of coupled vibrations of rotor with different type of cracks including transverse crack, transverse-slant crack and arbitrary slant crack, are of different sensitivities to oriented angle of crack surface, for example the rotating fundamental frequency and its second harmonic frequency, the torsional excitation frequency and its sideband components. These research results can provide theoretical basis for both characteristic parameters identification and diagnosis of rotor cracks.
  • [1] Chen YS, Zhang HB . Review and prospect on the research of dynamics of complete aero-engine systems. Acta Aeronautica et Astronautica Sinica, 2011,32(8):1371-1391
    [2] 吴玉香, 张景, 王聪 . 基于径向基函数神经网络的转子系统裂纹故障诊断. 控制理论与应用, 2014,31(8):1061-1068
    [2] ( Wu Yuxiang, Zhang Jing, Wang Cong . Ault diagnosis of cracked rotor systems based on radial basis function neural networks. Control Theory & Applications, 2014,31(8):1061-1068 (in Chinese))
    [3] 路振勇, 陈予恕, 侯磊 等. 常开空心轴裂纹转子系统的动力学特性. 航空动力学报, 2015,30(2):422-430
    [3] ( Lu Zhenyong, Chen Yushu, Hou Lei , et al. Dynamic characteristics of a open crack in hollow shaft rotor system. Journal of Aerospace Power, 2015,30(2):422-430 (in Chinese))
    [4] 徐玉秀, 赵晓菲, 熊一奇 . 基于传递路径的多级齿轮箱齿轮裂纹故障识别. 仪器仪表学报, 2016,17(5):1018-1024
    [4] ( Xu Yuxiu, Zhao Xiaofei, Xiong Yiqi . Gear crack fault identification for multi-stage gearbox based on signal propagation path. Chinese Journal of Scientific Instrument, 2016,17(5):1018-1024 (in Chinese))
    [5] 宁少慧, 韩振南, 武学峰 等. 嵌入式传感器的齿轮裂纹故障诊断. 振动与冲击, 2018,37(11):42-47
    [5] ( Ning Shaohui, Han Zhennan, Wu Xuefeng , et al. Gear crack fault diagnosis based on embedded sensors. Journal of Vibration and Shock, 2018,37(11):42-47 (in Chinese))
    [6] 向玲, 张悦 . 基于轴心轨迹形态的转子裂纹故障分析与诊断. 振动、测试与诊断, 2019, 39(4): 760-766, 903-904
    [6] ( Xiang Ling, Zhang Yue . Fault analysis and diagnosis of cracks based on the rotor orbit shape. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 760-766, 903-904 (in Chinese))
    [7] Darpe AK, Gupta K, Chawla A . Coupled bending, longitudinal and torsional vibrations of a cracked rotor. Journal of Sound and Vibration, 2004,269(1):33-60
    [8] Darpe AK . Coupled vibrations of a rotor with slant crack. Journal of Sound and Vibration, 2007,305(1-2):172-193
    [9] Lu WX, Chu FL . Shaft crack identification based on vibration and AE signals. Shock and Vibration, 2011,18(1-2):115-126
    [10] 杨丹, 甘春标, 杨世锡 等. 一类初弯曲转子的裂纹-碰摩故障响应分析. 浙江大学学报(工学版), 2014,48(8):1496-1501
    [10] ( Yang Dan, Gan Chunbiao, Yang Shixi , et al. Analysis on response of a rotor with initial bend deformation under coupling fault of crack and rub-impact. Journal of Zhejiang University ( Engineering Science, 2014,8:1496-1501 (in Chinese))
    [11] Ebrahimi A, Heydarin M, Behzad M . A continuous vibration theory for rotors with an open edge crack. Journal of Sound and Vibration, 2014,333(15):3522-3535
    [12] Chen XL . Nonlinear responses analysis caused by slant crack in a rotor-bearing system. Journal of Vibroengineering, 2016,18(7):4369-4387
    [13] Wang Z, Xu Q, Liu ZL , et al. Research on local rub fault transfer mechanism in rotor system. Journal of Vibroengineering, 2017,19(4):2534-2547
    [14] 路振勇, 侯磊, 侯升亮 等. 含裂纹故障的航空发动机转子系统动力学特性分析. 振动与冲击, 2018,37(3):40-46
    [14] ( Lu Zhenyong, Hou Lei, Hou Shengliang , et al. Dynamic characteristics of an aero-engine rotor system with crack faults. Vibration and Shock, 2018,37(3):40-46 (in Chinese))
    [15] Sandeep S, Rajiv T . Model based identification of crack and bearing dynamic parameters in flexible rotor systems supported with an auxiliary active magnetic bearing. Mechanism & Machine Theory, 2018,122:292-307
    [16] Conor PC, James AD, Hollis MJ , et al. Applications of fractography for aircraft defect causal analysis. Fatigue and Fracture of Engineering Materials and Structures, 2012,35(1):84-91
    [17] Bachschmid N, Pennacchi P, Tanzi E . Some remarks on breathing mechanism, on non-linear effects and on slant and helicoidal cracks. Mechanical Systems and Signal Processing, 2008,22(4):879-904
    [18] Han QK, Zhao JS, Chu FL . Dynamic analysis of a geared rotor system considering a slant crack on the shaft. Journal of Sound and Vibration, 2012,331(26):5803-5823
    [19] Papadopoulos CA, Dimarogonas AD . Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. Journal of Sound and Vibration, 1987,117(1):81-93
    [20] 焦卫东, 蒋永华, 施继忠 等. 空间任意斜裂纹引起的转子刚度变化机理研究. 振动工程学报, 2018,31(3):490-499
    [20] ( Jiao Weidong, Jiang Yonghua, Shi Jizhong , et al. Study on rotor stiffness variation mechanism caused by an arbitrary spatial slant crack. Journal of Vibration Engineering, 2018,31(3):490-499 (in Chinese))
    [21] 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算发改进型扩展有限元法. 力学学报, 2018,50(3):599-610
    [21] ( Wen Longfei, Wang Lixiang, Tian Rong . Accurate computation on dynamic using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [22] 王晓明, 吴荣兴, 肖衡 . 显式模拟类橡胶材料Mullins效应滞回圈. 力学学报, 2019,51(2):484-493
    [22] ( Wang Xiaoming, Wu Rongxing, Xiao Heng . Explicit modeling the hysteresis loops of the mulling effect for rubber-like materials. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):484-493 (in Chinese))
    [23] 于思淼, 蔡力勋, 姚迪 等. 准静态条件下金属材料的临界断裂准则研究. 力学学报, 2018,50(5):1063-1080
    [23] ( Yu Simiao, Cai Lixun, Yao Di , et al. The critical strength criterion of metal materials under quasi-static loading. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1063-1080 (in Chinese))
    [24] 李亚波, 宋清源, 杨凯 等. 试样疲劳性能尺度效应的概率控制体积方法. 力学学报, 2019,51(5):1363-1371
    [24] ( Li Yabo, Song Qingyuan, Yang Kai , et al. Probabilistic control volume method for the size effect of specimen fatigue performance. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1363-1371 (in Chinese))
    [25] 殷有泉, 励争, 邓成光 . 材料力学(修订版) 北京: 北京大学出版社, 2006
    [25] ( Yin Youquan, Li Zheng, Zheng Chengguang. Mechanics of Materials (Revised Edition). Beijing: Beijing University Press, 2006 (in Chinese))
    [26] 孙训方, 方孝淑, 陆耀洪 . 材料力学(第3版). 北京: 高等教育出版社, 2012: 152-161
    [26] ( Sun Xunfang, Fang Xiaoshu, Lu Yaohong. Mechanics of Materials (The third edition). Beijing: Higher Education Press, 2012 (in Chinese))
    [27] Wu J, Chen C . Free vibration analysis of the 3-d frameworks with effects of shear deformation and rotary inertia considered. Journal of Taiwan Society of Naval Architects and Marine Engineers, 2008,27(3):131-144
    [28] 刘艳芳 . 汽车覆盖件冲压成形有限元数值模拟中关键技术的研究与开发. [博士论文]. 北京: 北京航空航天大学, 2006
    [28] ( Liu Yanfang . Study and development of the key techniques of finite element numerical simulation of automobile panels stamping forming processes. [PhD Thesis]. Beijing: Beijing University of Aeronautics and Astronautics, 2006 (in Chinese))
    [29] Shen XY, Jia JH, Zhao M , et al. Coupled torsional-lateral vibration of the unbalanced rotor system with external excitations. Journal of Strain Analysis for Engineering Design, 2007,42(6):423-431
    [30] Ding Q, Zhang KP . Lateral and torsional vibrations of a two-disk rotor-stator system with axial contact. AIP Conference Proceedings, 2010,1233:999-1004
    [31] Krishna IRP, Padmanabhan C . Experimental and numerical investigations on rotor-stator rub. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018,232(18):3200-3212
    [32] Sun WP, Yan ZM, Tan T , et al. Nonlinear characterization of the rotor-bearing system with the oil-film and unbalance forces considering the effect of the oil-film temperature. Nonlinear Dynamics, 2018,92(3):1119-1145
    [33] Alzibdeh A, Alqaradawi M, Balachandran B . Effects of high frequency drive speed modulation on rotor with continuous stator contact. International Journal of Mechanical Sciences, 2017, 131-132:559-571
    [34] Hua CL, Cao GH, Rao ZS , et al. Coupled bending and torsional vibration of a rotor system with nonlinear friction. Journal of Mechanical Science and Technology, 2017,31(6):2679-2689
    [35] Patel TH, Darpe AK . Coupled bending-torsional vibration analysis of rotor with rub and crack. Journal of Sound and Vibration, 2009,326(3-5):740-752
  • 期刊类型引用(2)

    1. 高朋,侯磊,陈予恕. 动载荷作用下中介轴承的非线性热行为研究. 力学学报. 2021(01): 248-259 . 本站查看
    2. 陈玉成,李志农,谷士鹏,马亚平. 分数阶次对分数阶斜裂纹转子系统的非线性动力学特性影响研究. 兵器装备工程学报. 2021(09): 280-285 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1801
  • HTML全文浏览量:  341
  • PDF下载量:  100
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-10-20
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回