EI、Scopus 收录
中文核心期刊

含热冲击预损伤的陶瓷基复合材料损伤本构模型

杨正茂, 刘晖, 杨俊杰

杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型[J]. 力学学报, 2019, 51(6): 1797-1809. DOI: 10.6052/0459-1879-19-229
引用本文: 杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型[J]. 力学学报, 2019, 51(6): 1797-1809. DOI: 10.6052/0459-1879-19-229
Yang Zhengmao, Liu Hui, Yang Junjie. DAMAGE CONSTITUTIVE MODEL FOR THERMAL SHOCKED-CERAMIC MATRIX COMPOSITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1797-1809. DOI: 10.6052/0459-1879-19-229
Citation: Yang Zhengmao, Liu Hui, Yang Junjie. DAMAGE CONSTITUTIVE MODEL FOR THERMAL SHOCKED-CERAMIC MATRIX COMPOSITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1797-1809. DOI: 10.6052/0459-1879-19-229
杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型[J]. 力学学报, 2019, 51(6): 1797-1809. CSTR: 32045.14.0459-1879-19-229
引用本文: 杨正茂, 刘晖, 杨俊杰. 含热冲击预损伤的陶瓷基复合材料损伤本构模型[J]. 力学学报, 2019, 51(6): 1797-1809. CSTR: 32045.14.0459-1879-19-229
Yang Zhengmao, Liu Hui, Yang Junjie. DAMAGE CONSTITUTIVE MODEL FOR THERMAL SHOCKED-CERAMIC MATRIX COMPOSITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1797-1809. CSTR: 32045.14.0459-1879-19-229
Citation: Yang Zhengmao, Liu Hui, Yang Junjie. DAMAGE CONSTITUTIVE MODEL FOR THERMAL SHOCKED-CERAMIC MATRIX COMPOSITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1797-1809. CSTR: 32045.14.0459-1879-19-229

含热冲击预损伤的陶瓷基复合材料损伤本构模型

基金项目: 1) 中国科学院战略性先导专项(XDA17030100);国家自然科学基金项目资助(11572169);国家自然科学基金项目资助(51775294)
详细信息
    通讯作者:

    杨正茂

  • 中图分类号: TB332

DAMAGE CONSTITUTIVE MODEL FOR THERMAL SHOCKED-CERAMIC MATRIX COMPOSITE

  • 摘要: 陶瓷基复合材料结构在服役过程中不可避免地经受热冲击(较高的热应力梯度)而产生热机械损伤, 因此, 建立含循环热冲击预损伤材料的损伤本构模型, 以描述材料在热机械载荷作用下的力学行为, 对材料结构损伤容限设计与结构完整性评估非常重要. 本文首先对经历了循环热冲击的材料进行单调拉伸损伤实验, 发现对于含循环热冲击预损伤的材料, 其弹性模量的下降与所施加的应变直接相关. 然后在连续介质损伤力学的框架下, 基于平面应力假设, 建立了含循环热冲击预损伤材料的损伤演化模型, 该模型所涉及的参数可通过一个偏轴(45$^\circ$)以及两个正轴(平行于两个主方向)的单调拉伸试验获得. 最后, 采用经典塑性理论对由基体损伤引起的非弹性应变进行了描述. 本文所提出的应变损伤宏观模型可以描述陶瓷基复合材料在热机械载荷作用下的损伤演化, 同时弥补了含预损伤的陶瓷基复合材料在机械载荷下损伤本构模型在理论及实验研究方面的不足.
    Abstract: The ceramic-matrix composite (CMC) structure is inevitably subjected to cyclic thermal shocks in service, which induces the thermo-mechanical damage. Investigation of the damage constitutive model of the thermal shocked-CMC is of significance in the design and performance evaluation of such composites in aeronautical industry. In the present work, monotonic tensile damage tests were conducted for the thermal shocked-CMC. It is found that the degradation of elastic modulus for the thermal shocked-composites are directly related to the applied strain. Based on the framework of continuum damage mechanic, a nonlinear damage evolution model for the thermal shocked-CMC was proposed under plane stress assumption. The identification of the damage parameters involved in this model requires one off-axis (45$^\circ$), and two on-axis (parallel to tow directions) uniaxial tensile tests. Finally, the inelastic strain caused by matrix damage is described by classical plastic theory. The proposed strain damage macroscopic model can describe the damage evolution of CMC under thermo-mechanical loading, and also compensate the deficiency of the theoretical and experimental research for the damage evolution model of damaged-CMC under mechanical loading.
  • 1 Rajan VP, Shaw JH, Rossol MN, et al. An elastic--plastic constitutive model for ceramic composite laminates. Composites Part A$:$ Applied Science and Manufacturing, 2014,66:44-57
    2 Chateau C, Gelebart L, Bornert M, et al. Modeling of damage in unidirectional ceramic matrix composites and multi-scale experimental validation on third generation SiC/SiC minicomposites. Journal of the Mechanics and Physics of Solids, 2014,63:298-319
    3 Gowayed Y, Abouzeida E, Smyth I, et al. The role of oxidation in time-dependent response of ceramic--matrix composites. Composites Part B$:$ Engineering, 2015,76:20-30
    4 Askarinejad S, Rahbar N, Sabelkin V, et al. Mechanical behavior of a notched oxide/oxide ceramic matrix composite in combustion environment: Experiments and simulations. Composite Structures, 2015,127:77-86
    5 Xu W, Zok FW, McMeeking RM . Model of Oxidation-Induced Fiber Fracture in SiC/SiC Composites. Journal of the American Ceramic Society, 2014. 97(11): 3676-3683
    6 Lamon J. Review: Creep of fibre-reinforced ceramic matrix composites. International Materials Reviews, 2019: 1-35
    7 Ben Ramdane C, Julian-Jankowiak A, Valle R, et al. Microstructure and mechanical behavior of a Nextel TM 610/alumina weak matrix composite subjected to tensile and compressive loadings. Journal of the European Ceramic Society, 2017,37(8): 2919-2932
    8 Shojaei A, Li GQ, Fish J, et al. Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics. International Journal of Solids and Structures, 2014. 51(23-24):4068-4081
    9 Talreja R. Continuum modeling of damage in ceramic matrix composites. Mechanics of Materials, 1991,12(2): 165-80
    10 Ladeveze P, Gasser A, Allix O. Damage mechanisms modeling for ceramic composites. Journal of Engineering Materials and Technology, 1994,116(3): 331
    11 Chaboche JL, Maire JF. New progress in micromechanics-based CDM models and their application to CMCs. Composites Science and Technology, 2001,61(15): 2239-46
    12 Chaboche JL, Maire JF. A new micromechanics based CDM model and its application to CMC's. Aerospace Science and Technology, 2002,6(2): 131-145
    13 Camus G. Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: Application to a 2-D SiC/SiC. International Journal of Solids and Structures, 2000,37(6): 919-942.
    14 Li J, Jiao GQ, Wang B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part I - Experiment and analysis. Chinese Journal of Aeronautics, 2014,27(6): 1586-1597
    15 Li J, Jiao GQ, Wang B, et al. Damage characteristics and constitutive modeling of the 2D C/SiC composite: Part II -- Material model and numerical implementation. Chinese Journal of Aeronautics, 2015,28(1): 314-326
    16 Xie JB, Fang GD, Chen Z, et al. An anisotropic elastoplastic damage constitutive model for 3D needled C/C-SiC composites. Composite Structures, 2017,176:164-177
    17 Pineda EJ, Bednarcyk BA, Arnold SM. Validated progressive damage analysis of simple polymer matrix composite laminates exhibiting matrix microdamage: Comparing macromechanics and micromechanics. Composites Science and Technology, 2016,133:184-191
    18 Evans AG, Marshall DB. The mechanical behavior of ceramic matrix composites//Proceedings of The 7th International Conference On Fracture(ICF7), 1989, Pergamon: Oxford, 3593-3641
    19 Hsueh CH. Matrix cracking with frictional bridging fibres in continuous fibre ceramic composites. Journal of Materials Science, 1995,30(7): 1781-1789
    20 Yao Y, Chen SH. Effects of the longitudinal surface roughness on fiber pull-out behavior in carbon fiber-reinforced epoxy resin composites. Journal of Applied Mechanics, 2013,80(2): 1-13
    21 Santhosh U, Ahmad J, Ojard G, et al. Deformation and damage modeling of ceramic matrix composites under multiaxial stresses. Composites Part B-Engineering, 2016,90:97-106
    22 Yang ZM, Yuan H, Liu H. Evolution and characterization of cyclic thermal shock-induced thermomechanical damage in oxide/oxide ceramics matrix composites. International Journal of Fatigue, 2019,120:150-161
    23 Yang ZM, Yuan H, Markert B. Representation of micro-structural evolution and thermo-mechanical damage in thermal shocked oxide/oxide ceramic matrix composites. International Journal of Fatigue, 2019,126:122-129
    24 Yang ZM, Liu H, Yuan H, Micro-porosity as damage indicator for characterizing cyclic thermal shock-induced anisotropic damage in oxide/oxide ceramic matrix composites. Engineering Fracture Mechanics, 2019,220:106669
    25 Wilson DM, Visser LR. High performance oxide fibers for metal and ceramic composites. Composites Part A-Applied Science and Manufacturing, 2001,32(8): 1143-1153
    26 Moser B, Rossoll A, Weber L, et al. Damage evolution of Nextel 610TM alumina fibre reinforced aluminium. Acta Materialia, 2004,52(3): 573-581
    27 Mall S, Nye AR, Jefferson G. Tension--tension fatigue behavior of Nextel TM 720/Alumina under combustion environment. International Journal of Applied Ceramic Technology, 2012,9(1): 159-71
    28 Arai Y, Aoki Y, Kagawa Y. Effect of cristobalite formation on the delamination resistance of an oxide/Si/(SiC/SiC) environmental barrier coating system after cyclic high temperature thermal exposure. Scripta Materialia, 2017,139:58-62
    29 Yang ZM, Liu H. Effects of thermal aging on the cyclic thermal shock behavior of oxide/oxide ceramic matrix composites. Materials Science and Engineering$:$ A, 2020,769:138494
    30 李伟, 方国东, 李玮洁 等. 碳纤维增强复合材料微观烧蚀行为数值模拟. 力学学报, 2019,51(3):835-844
    30 ( Li Wei, Fang Guodong, Li Weijie, et al. Numerical simulation of micro-ablation behavior for carbon fiber reinforced composites. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3): 835-844 (in Chinese))
    31 李龙彪 . 纤维增强陶瓷基复合材料疲劳迟滞回线模型研究. 力学学报, 2014,46(5): 710-29
    31 ( Li Longbiao, Investigation on fatigue hysteresis loops models of fibre-reinforced ceramic-matrix composites. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(5): 710-729 (in Chinese))
    32 王奇志, 林慧星, 许赟泉 . 二维编织陶瓷基复合材料偏轴拉伸力学性能预测. 复合材料学报, 2018,35(12): 3423-3432
    32 ( Wang Qizhi, Lin Huixing, Xu yunquan. Mechanical properties prediction of 2D braided ceramic matrix composites under off-axial tension. Acta Materiae Compositae Sinica, 2018,35(12): 3423-3432 (in Chinese))
    33 Gowayed Y, Pierce J, Buchanan D, et al. Effect of microstructural features and properties of constituents on the thermo-elastic properties of ceramic matrix composites. Composites Part B: Engineering, 2018,135:155-65
    34 Lemaitre J, Desmorat R . Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. Berlin, Heidelberg: Springer- Verlag Berlin Heidelberg, 2005: 1-76
    35 Bonora N, Newaz G. Modeling damage evolution in a hybrid ceramic matrix composite under static tensile load. Journal of Engineering Materials and Technology, 1997,119(4): 401-407
    36 郭洪宝, 王波, 贾普荣 等. 平纹编织陶瓷基复合材料面内剪切细观损伤行为研究. 力学学报, 2016,48(2):361-368
    36 ( Guo Hongbao, Wang Bo, Jia Purong, et al. Mesoscopic damage behaviors of plain woven ceramic composite under in-plane shear loading. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(2): 361-368 (in Chinese))
    37 Jagannathan N, Gururaja S, Manjunatha CM. Probabilistic strength based matrix crack evolution in multi-directional composite laminates. Composites Part B$:$ Engineering, 2016,87:263-73
    38 Lamon J, Thommeret B, Percevault C. Probabilistic-statistical approach to matrix damage and stress--Strain behavior of 2-D woven SiC/SiC ceramic matrix composites. Journal of the European Ceramic Society, 1998,18(13): 1797-808
    39 Lamon J. Fiber reinforced ceramic matrix composites: A probabilistic micromechanics-based approach// Handbook of Mechanics of Materials, S. Schmauder et al., Editors. 2018, Springer Singapore: Singapore, 1-32
    40 Bonora N, Labarbera A, Marchetti M, et al. Experimental verification and theoretical simulation of fracture behaviors of composite-materials. Composite Structures, 1993,23(2): 87-97
    41 Siron O, Pailhes J, Lamon J. Modelling of the stress/strain behaviour of a carbon/carbon composite with a 2.5 dimensional fiber architecture under tensile and shear loads at room temperature. Composite Science Technology, 1999,59(1): 1-12
    42 Mahboob Z, Chemisky Y, Meraghni F, et al. Mesoscale modelling of tensile response and damage evolution in natural fibre reinforced laminates. Composites Part B: Engineering, 2017,119:168-183
  • 期刊类型引用(8)

    1. 宋远翔,杨成鹏,李俊,贾斐. 2D-C/SiC复合材料的偏轴压缩力学行为. 力学学报. 2025(03): 644-657 . 本站查看
    2. 李鑫,李龙,邵红艳,于国强,高希光,陈官峰,张春兰. SiC_f/SiC陶瓷基复合材料T型结构件在弯曲载荷下的失效行为研究. 推进技术. 2023(08): 173-180 . 百度学术
    3. 杨成鹏,林江嵘,贾斐,王波. 2D-C/SiC复合材料的高温非线性本构模型. 力学学报. 2023(08): 1721-1731 . 本站查看
    4. 金其多,任毅如,胡绚,蒋宏勇. 含黏弹性夹芯FG-GRC后屈曲梁的低速冲击响应. 力学学报. 2021(01): 194-204 . 本站查看
    5. 郭晓龙,姚寅,陈少华. 一种预测颗粒增强复合材料界面力学性能的新方法. 力学学报. 2021(05): 1334-1344 . 本站查看
    6. 汪佳辉,吴锦武,郭小军,胡晓安,李龙彪,王海涛. 陶瓷基复合材料结构固有频率与内部损伤分析. 失效分析与预防. 2021(03): 177-183 . 百度学术
    7. 王晓博,李璐璐,赵波,宋超胜. 陶瓷基复合材料加工技术及其表面亚表面损伤机制研究进展. 表面技术. 2021(12): 17-34 . 百度学术
    8. 曹明月,张启,吴建国,葛敬冉,梁军. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报. 2020(04): 1095-1105 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  2038
  • HTML全文浏览量:  410
  • PDF下载量:  333
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-08-21
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回