EI、Scopus 收录
中文核心期刊

多柔体系统动力学建模与优化研究进展

孙加亮, 田强, 胡海岩

孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
引用本文: 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
Citation: Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. DOI: 10.6052/0459-1879-19-212
孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报, 2019, 51(6): 1565-1586. CSTR: 32045.14.0459-1879-19-212
引用本文: 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展[J]. 力学学报, 2019, 51(6): 1565-1586. CSTR: 32045.14.0459-1879-19-212
Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. CSTR: 32045.14.0459-1879-19-212
Citation: Sun Jialiang, Tian Qiang, Hu Haiyan. ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1565-1586. CSTR: 32045.14.0459-1879-19-212

多柔体系统动力学建模与优化研究进展

基金项目: 1) 国家自然科学基金项目(11832005);国家自然科学基金项目(11722216);高等学校学科创新引智计划(B16003);南京航空航天大学科研启动基金项目与江苏高校优势学科建设工程资助项目资助
详细信息
    通讯作者:

    孙加亮

  • 中图分类号: O313

ADVANCES IN DYNAMIC MODELING AND OPTIMIZATION OF FLEXIBLE MULTIBODY SYSTEMS

  • 摘要: 多柔体系统是由柔性部件和运动副组成的力学系统,在航空、航天、车辆、机械与兵器等众多工程领域具有广泛的应用前景, 其典型的代表包括柔性机械臂、直升机旋翼、卫星的可展开天线、太阳帆航天器等. 近年来,随着工程技术的发展,多柔体系统动力学问题日益突出,尤其是含变长度柔性部件的多柔体系统,不仅涉及其动力学 建模与计算,还涉及其动力学优化设计. 事实上,部件柔性对多柔体系统的动力学行为影响很大,直接影响到优化结果,因此需要发展基于多柔体系统动力学的优化设计方法. 本文首先阐述了多柔体系统动力学优化的研究背景及意义,简要回顾了多柔体系统动力学建模的3类方法:浮动坐标方法、几何 精确方法和绝对节点坐标方法,并介绍了含变长度柔性部件的多柔体系统动力学建模方法. 系统概述了多柔体系统动力学响应优化、动力学特性优化和动力学灵敏度分析3个方面的研究进展,并从尺寸优化、形状优化和 拓扑优化 3 个方面综述了多柔体系统部件优化的研究进展. 本文最后提出了在多柔体系统动力学优化研究中值得关注的若干问题.
    Abstract: Flexible multibody system is a kind of mechanical system composed of many flexible components and kinematic pairs, such as flexible robot arms, helicopter rotors, deployable antennas of a satellite, and solar sail spacecraft. Flexible multibody systems serve as useful models in aerospace engineering, vehicle engineering, mechanical engineering, weapon engineering and so on. Recently, with the development of the engineering technology, new challenges have arisen to establish an accurate dynamic model of a flexible multibody system, as well as for the dynamic optimization design of such a flexible multibody system, especially of a flexible multibody system with variable-length components. As a matter of fact, when the component gets more and more flexible, the interactions between the component and the flexible multibody system cannot be disregarded when performing optimization design. The component-based structural optimization, hence, should be extended to the flexible multibody system-based structural optimization. In this review, the research background and significance of the dynamic optimization of flexible multibody systems are firstly surveyed. Three methods for investigating flexible multibody dynamics including flexible multibody systems with variable-length components are briefly outlined, i.e., floating frame of reference formulation (FFRF), geometrically exact formulation (GEF), and absolute nodal coordinate formulation (ANCF). Afterwards, the recent advances are systematically reviewed in the dynamic response optimization, the dynamic characteristics optimization, and the dynamic sensitivity analysis of flexible multibody systems, as well as the structural optimization, i.e., size optimization, shape optimization, and topology optimization of the flexible components in a flexible multibody system. Finally, several open problems are addressed for future studies.
  • 1 洪嘉振, 蒋丽忠 . 柔性多体系统刚-柔耦合动力学. 力学进展, 2000,30(1):15-20
    1 ( Hong Jiazhen, Jiang Lizhong . Flexible multibody dynamics with coupled rigid and deformation motions. Advances in Mechanics, 2000,30(1):15-20 (in Chinese))
    2 田强, 刘铖, 李培 等. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 2017,15(5):385-405
    2 ( Tian Qiang, Liu Cheng, Li Pei , et al. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 2017,15(5):385-405 (in Chinese))
    3 田强, 张云清, 陈立平 等. 柔性多体系统动力学绝对节点坐标方法研究进展. 力学进展, 2010,40(2):189-202
    3 ( Tian Qiang, Zhang Yunqing, Chen Liping , et al. Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Advances in Mechanics, 2010,40(2):189-202 (in Chinese))
    4 Tromme E, Held A, Duysinx P , et al. System-based approaches for structural optimization of flexible mechanisms. Archives of Computational Methods in Engineering, 2018,25(3):817-844
    5 Guo X, Cheng GD . Recent development in structural design and optimization. Acta Mechanica Sinica, 2010,26(6):807-823
    6 段慧玲, 曲绍兴, 施兴华 等. 第十八届美国理论与应用力学大会总结. 力学学报, 2018,50(5):1266-1275
    6 ( Duan Huiling, Qu Shaoxing, Shi Xinghua , et al. 18th U.S. National Congress of Theoretical and Applied Mechanics. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1266-1275 (in Chinese))
    7 Sun JL, Tian Q, Hu HY . Structural and topology optimization of flexible multibody systems//18th U.S. National Congress for Theoretical and Applied Mechanics, Chicago, USA, 2018
    8 Orlandea NV . Multibody systems history of ADAMS. Journal of Computational and Nonlinear Dynamics, 2016,11(6):060301
    9 Shabana AA . Dynamics of large scale flexible mechanical systems. [PhD Thesis]. Iowa City: University of Iowa, 1982
    10 Shabana AA, Wehage R . Variable degree of freedom component mode analysis of inertia-variant flexible mechanical systems. Report No. 81-12. Center for Computer Aided Design, University of Iowa, 1981
    11 Linkins PW . Finite element appendage equations for hybrid coordinate dynamcis analysis. Journal of Solids & Structures, 1972,8:709-731
    12 De Veubeke BF . The dynamics of flexible bodies. International Journal of Engineering Science, 1976,14(10):895-913
    13 Shabana AA. Dynamics of Multibody Systems. 3rd ed. New York: Cambridge University Press, 2005
    14 Lugris U, Naya MA, Luaces A , et al. Efficient calculation of the inertia terms in floating frame of reference formulations for flexible multibody dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2009,223(2):147-157
    15 Orzechowski G, Matikainen MK, Mikkola AM . Inertia forces and shape integrals in the floating frame of reference formulation. Nonlinear Dynamics, 2017,88(3):1953-1968
    16 Nada AA, Hussein BA, Megahed SM , et al. Use of the floating frame of reference formulation in large deformation analysis: Experimental and numerical validation. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2010,224:45-58
    17 Das M, Barut A, Madenci E . Analysis of multibody systems experiencing large elastic deformations. Multibody System Dynamics, 2010,23(1):1-31
    18 Wu L, Tiso P . Nonlinear model order reduction for flexible multibody dynamics: A modal derivatives approach. Multibody System Dynamics, 2016,36(4):405-425
    19 Hayashi H, Takehara S, Terumichi Y . Numerical approach for flexible body motion with large displacement and time-varying length//The 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, BEXCO, Busan, Korea, 2014
    20 Terumichi Y, Kaczmarczyk S, Sogabe K . Numerical approach in the analysis of flexible body motion with time-varying length and large displacement using multiple time scales//The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland, 2010
    21 Simo JC . On a stress resultant geometrically exact shell model. Part VII: Shell intersections with 56-DOF finite element formulations. Computer Methods in Applied Mechanics and Engineering, 1993,108(3-4):319-339
    22 Simo JC, Kennedy JG . On a stress resultant geometrically exact shell model. Part V. Nonlinear plasticity: Formulation and integration algorithms. Computer Methods in Applied Mechanics and Engineering, 1992,96(2):133-171
    23 Simo JC, Fox DD, Rifai MS . On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Computer Methods in Applied Mechanics and Engineering, 1990,79(1):21-70
    24 Simo JC, Rifai MS, Fox DD . On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Computer Methods in Applied Mechanics and Engineering, 1990,81(1):91-126
    25 Simo JC, Fox DD . On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Computer Methods in Applied Mechanics and Engineering, 1989,72(3):267-304
    26 Simo JC, Fox DD, Rifai MS . On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects. Computer Methods in Applied Mechanics and Engineering, 1989,73(1):53-92
    27 Simo JC, Vu-Quoc L . A geometrically-exact rod model incorporating shear and torsion-warping deformation. International Journal of Solids and Structures, 1991,27(3):371-393
    28 Simo JC, Vu-Quoc L . On the dynamics of flexible beams under large overall motions - the plane case, part I and II. Journal of Applied Mechanics, 1986,53:849-863
    29 Simo JC . A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 1985,49(1):55-70
    30 Shabana AA . ANCF consistent rotation-based finite element formulation. Journal of Computational and Nonlinear Dynamics, 2016,11:014502
    31 G$\acute{e}$radin M, Cardona A . Flexible Multibody Dynamics: A Finite Element Approach. New York: John Wiley & Sons, 2001
    32 Shabana AA . Flexible multibody dynamics: review of past and recent developments. Multibody System Dynamics, 1997,1(2):189-222
    33 Ren H, Fan W, Zhu WD . An accurate and robust geometrically exact curved beam formulation for multibody dynamic analysis. Journal of Vibration and Acoustics, 2018,140(1):011012
    34 Ding JY, Wallin M, Wei C , et al. Use of independent rotation field in the large displacement analysis of beams. Nonlinear Dynamics, 2014,76(3):1829-1843
    35 Shabana AA . Uniqueness of the geometric representation in large rotation finite element formulations. Journal of Computational and Nonlinear Dynamics, 2010,5:044501
    36 Ding JY, Wallin M, Wei C , et al. On the issue of redundancy in the large rotation vector formulation//ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, New York, USA, 201437 Jeleni$\acute{c}$ G, Crisfield MA. Interpolation of rotational variables in nonlinear dynamics of 3D beams. International Journal for Numerical Methods in Engineering, 1998,43(7):1193-1222
    38 Betsch P, Menzel A, Stein E . On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells. Computer Methods in Applied Mechanics and Engineering, 1998,155(3):273-305
    39 Ghosh S, Roy D . Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam. Computer Methods in Applied Mechanics and Engineering, 2008,198(3-4):555-571
    40 Ghosh S, Roy D . A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization. Computational Mechanics, 2009,44(1):103-118
    41 Bauchau OA, Han S . Interpolation of rotation and motion. Multibody System Dynamics, 2014,31(3):339-370
    42 Bauchau OA, Han S . Three-dimensional beam theory for flexible multibody dynamics. Journal of Computational and Nonlinear Dynamics, 2014,9(4):041011
    43 Makinen J . Total Lagrangian Reissner's geometrically exact beam element without singularities. International Journal for Numerical Methods in Engineering, 2007,70(9):1009-1048
    44 Zupan E, Saje M, Zupan D . The quaternion-based three-dimensional beam theory. Computer Methods in Applied Mechanics and Engineering, 2009,198(49-52):3944-3956
    45 Zhang R, Zhong H . Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elements in Analysis and Design, 2014,87:22-31
    46 Zhang R, Zhong H . Weak form quadrature element analysis of planar slender beams based on geometrically exact beam theory. Archive of Applied Mechanics, 2013,83(9):1309-1325
    47 Fan W, Zhu WD . An accurate singularity-free formulation of a three-dimensional curved Euler-Bernoulli beam for flexible multibody dynamic analysis. Journal of Vibration and Acoustics, 2016,138(5):051001
    48 Fan W, Zhu WD . An accurate singularity-free and locking-free formulation of a three-dimensional shear-deformable beam using Euler parameters. International Journal of Non-Linear Mechanics, 2018,102:136-146
    49 Fan W, Zhu WD . A new locking-free formulation of a three-dimensional shear-deformable beam. Journal of Vibration and Acoustics, 2017,139(5):051001
    50 Brüis O, Cardona A, Arnold M . Lie group generalized-$\alpha $ time integration of constrained flexible multibody systems. Mechanism and Machine Theory, 2012,48:121-137
    51 Brüis O, Cardona A . On the use of Lie group time integrators in multibody dynamics. Journal of Computational and Nonlinear Dynamics, 2010,5:031002
    52 Sonneville V, Brüis O . A formulation on the special Euclidean group for dynamic analysis of multibody systems. Journal of Computational and Nonlinear Dynamics, 2014,9(4):041002
    53 Sonneville V, Cardona A, Brüis O . Geometrically exact beam finite element formulated on the special Euclidean group. Computer Methods in Applied Mechanics and Engineering, 2014,268:451-474
    54 Sonneville V, Brüis O . Sensitivity analysis for multibody systems formulated on a lie group. Multibody System Dynamics, 2014,31(1):47-67
    55 Tromme E, Sonneville V, Guest JK , et al. System-wise equivalent static loads for the design of flexible mechanisms. Computer Methods in Applied Mechanics and Engineering, 2018,329:312-331
    56 Shi D, Berchenko-Kogan Y, Zenkov DV , et al. Hamel's formalism for infinite-dimensional mechanical systems. Journal of Nonlinear Science, 2017,27(1):241-283
    57 Liu H, Shi D . Optimal control of a mobile robot on sphere. Theoretical and Applied Mechanics Letters, 2019,9(1):27-31
    58 Wasfy TM, Noor AK . Computational strategies for flexible multibody systems. Applied Mechanics Reviews, 2003,56(6):553-613
    59 史加贝, 刘铸永, 洪嘉振 . 柔性多体动力学的共旋坐标法. 力学季刊, 2017,38(2):197-214
    59 ( Shi Jiabei, Liu Zhuyong, Hong Jiazhen . The co-rotational formulation for flexible multibody dynamics. Chinese Quarterly of Mechanics, 2017,38(2):197-214 (in Chinese))
    60 刘铸永 . 刚-柔耦合系统动力学建模理论与仿真技术研究. [博士论文]. 上海: 上海交通大学, 2008
    60 ( Liu Zhuyong . Study on modeling theory and simulation technique for rigid-flexible coupling systems dynamics. [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, 2008 (in Chinese))
    61 Liu J, Cheng Z, Ren G . An arbitrary Lagrangian-Eulerian formulation of a geometrically exact Timoshenko beam running through a tube. Acta Mechanica, 2018,229(8):3161-3188
    62 Shabana AA . An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. [Technical Report]. Report No. MBS96-1-UIC. University of Illinois at Chicago, 1996
    63 Shabana AA . Definition of ANCF finite elements. Journal of Computational and Nonlinear Dynamics, 2015,10(5):054506
    64 常汉江 . 空间结构展开动力学的等几何有限元建模方法. [博士论文]. 北京: 北京理工大学, 2018
    64 ( Chang Hanjiang . Finite element modeling of deployment dynamics of space structures via isogeometric analysis. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2018 (in Chinese))
    65 Sopanen J, Mikkola A . Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dynamics, 2003,34(1-2):53-74
    66 García-Vallejo D, Mikkola AM, Escalona JL . A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dynamics, 2007,50(1-2):249-264
    67 Sugiyama H, Suda Y . A curved beam element in the analysis of flexible multi-body systems using the absolute nodal coordinates. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2007,221(2):219-231
    68 Gerstmayr J, Shabana AA . Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dynamics, 2006,45(1-2):109-130
    69 Gerstmayr J, Sugiyama H, Mikkola A . Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. Journal of Computational and Nonlinear Dynamics, 2013,8(3):031016
    70 Nachbagauer K . State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Archives of Computational Methods in Engineering, 2014,21(3):293-319
    71 王庆涛 . 经历大范围运动和大变形的细梁接触动力学. [博士论文]. 南京: 南京航空航天大学, 2016
    71 ( Wang Qingtao . Contact dynamics of thin beams subject to overall motions and large deformations. [PhD Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese))
    72 Hu H, Tian Q, Liu C . Soft machines: Challenges to computational dynamics. Procedia IUTAM, 2017,20:10-17
    73 Olshevskiy A, Dmitrochenko O, Kim C . Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics, 2014,9:021001
    74 Olshevskiy A, Dmitrochenko O, Yang H , et al. Absolute nodal coordinate formulation of tetrahedral solid element. Nonlinear Dynamics, 2017,88(4):2457-2471
    75 Wei C, Wang L, Shabana AA . A total lagrangian ANCF liquid sloshing approach for multibody system applications. Journal of Computational and Nonlinear Dynamics, 2015,10(5):051014
    76 Pappalardo CM, Wang T, Shabana AA . Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics, 2017,89(4):2905-2932
    77 Hong DF, Tang JL, Ren GX . Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation. Journal of Fluids and Structures, 2011,27(8):1137-1148
    78 Hong DF, Ren GX . A modeling of sliding joint on one-dimensional flexible medium. Multibody System Dynamics, 2011,26(1):91-106
    79 Tang JL, Ren GX, Zhu WD , et al. Dynamics of variable-length tethers with application to tethered satellite deployment. Communications in Nonlinear Science and Numerical Simulation, 2011,16(8):3411-3424
    80 Du JL, Cui CZ, Bao H , et al. Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. Journal of Computational and Nonlinear Dynamics, 2015,10(1):011013
    81 Escalona JL . An arbitrary Lagrangian-Eulerian discretization method for modeling and simulation of reeving systems in multibody dynamics. Mechanism and Machine Theory, 2017,112:1-21
    82 Yang S, Deng ZQ, Sun J , et al. A variable-length beam element incorporating the effect of spinning. Latin American Journal of Solids and Structures, 2017,14:1506-1528
    83 Hyldahl P, Mikkola A, Balling O . A thin plate element based on the combined arbitrary Lagrange-Euler and absolute nodal coordinate formulations. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2013,227(3):211-219
    84 Sun JL, Tian Q, Hu HY , et al. Topology optimization of a flexible multibody system with variable-length bodies described by ALE-ANCF. Nonlinear Dynamics, 2018,93(2):413-441
    85 Sun JL, Tian Q, Hu HY , et al. Axially variable-length solid element of absolute nodal coordinate formulation. Acta Mechanica Sinica, 2019,35(3):653-663
    86 Erdman A, Sandor G, Oakberg R . A general method for kineto-elastodynamic analysis and synthesis of mechanisms. Journal of Engineering for Industry, 1972,94:1193-1205
    87 Imam I, Sandor G . A general method of kineto-elastodynamic design of high speed mechanisms. Mechanism and Machine Theory, 1973,8:497-516
    88 Oral S, Kemal Ider S . Optimum design of high-speed flexible robotic arms with dynamic behavior constraints. Computers & Structures, 1997,65:255-259
    89 Imam I, Sandor G . High-speed mechanism design——a general analytical approach. Journal of Engineering for Industry, 1975,97:609-628
    90 Khan M, Thornton W, Willmert K . Optimality criterion techniques applied to mechanical design. Journal of Engineering for Industry, 1978,100:319-327
    91 Thornton W, Willmert K, Khan M . Mechanism optimization via optimality criterion techniques. Journal of Mechanical Design, 1979,101:392-397
    92 Cleghorn W, Fenton R, Tabarrok B . Optimum design of high speed flexible mechanisms. Mechanism and Machine Theory, 1981,16:399-406
    93 Zhang C, Grandin H . Optimum design of flexible mechanisms. Journal of Mechanisms, Transmissions, and Automation in Design, 1983,105:267-272
    94 Sohoni VN, Haug EJ . A state space technique for optimal design of mechanisms. ASME Journal of Mechanical Design, 1982,104:792-798
    95 Etman L, Van Campen D . Design optimization of multibody systems by sequential approximation. Multibody System Dynamics, 1998,2:393-415
    96 Kim MS, Choi DH . Min-max dynamic response optimization of mechanical systems using approximate augmented Lagrangian. International Journal for Numerical Methods in Engineering, 1998,43(3):549-564
    97 Kang BS, Park GJ, Arora JS . Optimization of flexible multibody dynamic systems using the equivalent static load method. AIAA Journal, 2005,43(4):846-852
    98 Hong EP, You BJ, Kim CH , et al. Optimization of flexible components of multibody systems via equivalent static loads. Structural and Multidisciplinary Optimization, 2010,40(1-6):549-562
    99 Held A, Nowakowski C, Moghadasi A , et al. On the influence of model reduction techniques in topology optimization of flexible multibody systems using the floating frame of reference approach. Structural and Multidisciplinary Optimization, 2016,53(1):67-80
    100 Held A, Knüfer S, Seifried R . Structural sensitivity analysis of flexible multibody systems modeled with the floating frame of reference approach using the adjoint variable method. Multibody System Dynamics, 2017,40(3):287-302
    101 Moghadasi A, Held A, Seifried R . Modeling of revolute joints in topology optimization of flexible multibody systems. Journal of Computational and Nonlinear Dynamics, 2017,12(1):011015
    102 Moghadasi A, Held A, Seifried R . Topology optimization of members of flexible multibody systems under dominant inertia loading. Multibody System Dynamics, 2018,42(4):431-446
    103 Tromme E, Brüls O, Emonds-Alt J , et al. Discussion on the optimization problem formulation of flexible components in multibody systems. Structural and Multidisciplinary Optimization, 2013,48(6):1189-1206
    104 Tromme E, Tortorelli D, Brüls O , et al. Structural optimization of multibody system components described using level set techniques. Structural and Multidisciplinary Optimization, 2015,52(5):959-971
    105 Tromme E, Sonneville V, Brüls O , et al. On the equivalent static load method for flexible multibody systems described with a nonlinear finite element formalism. International Journal for Numerical Methods in Engineering, 2016,108(6):646-664
    106 Tromme E, Brüls O, Duysinx P . Weakly and fully coupled methods for structural optimization of flexible mechanisms. Multibody System Dynamics, 2016,38(4):391-417
    107 Vohar B, Kegl M, Ren Z . Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators. Engineering Optimization, 2008,40(12):1137-1150
    108 Sun JL, Tian Q, Hu HY . Structural optimization of flexible components in a flexible multibody system modeled via ANCF. Mechanism and Machine Theory, 2016,104:59-80
    109 Sun JL, Tian Q, Hu HY . Topology optimization based on level set for a flexible multibody system modeled via ANCF. Structural and Multidisciplinary Optimization, 2017,55(4):1159-1177
    110 Sun JL, Tian Q, Hu HY . Topology optimization of a three-dimensional flexible multibody system via moving morphable components. Journal of Computational and Nonlinear Dynamics, 2018,13(2):021010
    111 Kim E, Cho M . Design of a planar multibody dynamic system with ANCF beam elements based on an element-wise stiffness evaluation procedure. Structural and Multidisciplinary Optimization, 2018,58(3):1095-1107
    112 Sun JL, Tian Q, Hu HY , et al. Simultaneous topology and size optimization of a 3D variable-length structure described by the ALE-ANCF. Mechanism and Machine Theory, 2018,129:80-105
    113 Park G . Analytic Methods for Design Practice. London: Springer-Verlag, 2007
    114 Hong U, Park GJ . Determination of the crash pulse and optimization of the crash components using the response surface approximate optimization. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003,217(3):203-213
    115 Kurtaran H, Eskandarian A . Crashworthiness design optimization using successive response surface approxim. Computational Mechanics, 2002,29(4-5):409-421
    116 Kurtaran H, Eskandarian A . Design optimization of multi-body systems under impact loading by response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics, 2001,215(4):173-185
    117 Marklund P, Nilsson L . Optimization of a car body component subjected to side impact. Structural and Multidisciplinary Optimization, 2001,21(5):383-392
    118 Kang BS, Park GJ, Arora JS . A review of optimization of structures subjected to transient loads. Structural and Multidisciplinary Optimization, 2006,31(2):81-95
    119 Pereira MS, Dias JP . Optimization of rigid and flexible multibody systems with application to vehicle dynamics and crashworthiness//Virtual Nonlinear Multibody Systems, Netherlands: Springer, 2003: 363-382
    120 Brüls O, Lemaire E, Duysinx P , et al. Optimization of multibody systems and their structural components. Multibody Dynamics: Computational Methods and Applications, 2011,23:49-68
    121 Tromme E . Structural optimization of flexible components within a multibody dynamics approach. [PhD Thesis]. Université de Liége, 2015
    122 Held A . On structural optimization of flexible multibody systems. [PhD Thesis]. Universit?t Stuttg, 2014
    123 Dong G . Topology optimization for multi-functional components in multibody dynamics systems. [PhD Thesis]. The University of Michigan, 2012
    124 Wang Q . A study of alternative formulations for optimization of structural and mechanical systems subjected to static and dynamic loads. [PhD Thesis]. The University of Iowa, 2006
    125 H?ussler P, Minx J, Emmrich D . Topology optimization of dynamically loaded parts in mechanical systems: Coupling of MBS, FEM and structural optimization: NAFEMS seminar analysis of multi-body systems using FEM and MBS, Wiesbaden, Germany, 2004
    126 H?ussler P, Emmrich D, Müller O , et al. Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC.Construct//16th European ADAMS Users' Conference, Berchtesgaden, Germany, 2001
    127 Ilzh?fer BO, Müller PH, Emmrich D , et al. Shape optimization based on parameters from lifetime prediction: Nafems Seminar: Fatigue Analysis, Wiesbaden, Germany, 2000
    128 Albers A, H?ussler P . Topology optimization of dynamic loaded parts using multibody simulation and durability analysis//Nafems Seminar: Optimization in Structural Mechanics, Wiesbaden, Germany, 2005
    129 Held A, Seifried R . Gradient-based optimization of flexible multibody systems using the absolute nodal coordinate formulation//Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics, Zagreb, Croatia, 2013
    130 Yang ZJ, Chen X, Kelly R . A topological optimization approach for structural design of a high-speed low-load mechanism using the equivalent static loads method. International Journal for Numerical Methods in Engineering, 2012,89(5):584-598
    131 Yang ZJ, Chen X, Kelly R . A topological optimization method for flexible multi-body dynamic system using epsilon algorithm. Structural Engineering and Mechanics, 2011,35(5):475-487
    132 Sherif K, Irschik H . Efficient topology optimization of large dynamic finite element systems using fatigue. AIAA Journal, 2010,48(7):1339-1347
    133 Witteveen W, Puchner K, Sherif K , et al. Efficient topology optimization for large and dynamically loaded FE models: IMAC-XXVII//Conference and Exposition on Structural Dynamics. Orlando, Florida, USA, 2009
    134 陈建军, 车建文, 崔明涛 等. 结构动力优化设计述评与展望. 力学进展, 2001,31(2):181-192
    134 ( Chen Jianjun, Che Jianwen, Cui Mingtao , et al. A review on structural dynamic optimum design. Advances in Mechanics, 2001,31(2):181-192 (in Chinese))
    135 林家浩 . 结构动力优化设计发展综述. 力学进展, 1983,13(4):423-431
    135 ( Lin Jiahao . Review on the development in structural dynamic optimum design. Advances in Mechanics, 1983,13(4):423-431 (in Chinese))
    136 Grandhi R . Structural optimization with frequency constraints-a review. AIAA Journal, 1993,31(12):2296-2303
    137 Zargham S, Ward TA, Ramli R , et al. Topology optimization: A review for structural designs under vibration problems. Structural and Multidisciplinary Optimization, 2016,53(6):1157-1177
    138 Hashemi SH, Farhadi S, Carra S . Free vibration analysis of rotating thick plates. Journal of Sound and Vibration, 2009,323(1-2):366-384
    139 Yoo HH, Pierre C . Modal characteristic of a rotating rectangular cantilever plate. Journal of Sound and Vibration, 2003,259(1):81-96
    140 Yoo HH, Kim SK . Flapwise bending vibration of rotating plates. International Journal for Numerical Methods in Engineering, 2002,55(7):785-802
    141 Yoo HH, Kim SK, Inman DJ . Modal analysis of rotating composite cantilever plates. Journal of Sound and Vibration, 2002,258(2):233-246
    142 Yoo HH, Kim SK . Free vibration analysis of rotating cantilever plates. AIAA Journal, 2002,40(11):2188-2196
    143 Karmakar A, Sinha PK . Finite element free vibration analysis of rotating laminated composite pretwisted cantilever plates. Journal of Reinforced Plastics and Composites, 1997,16(16):1461-1491
    144 Ramamurti V, Kielb R . Natural frequencies of twisted rotating plates. Journal of Sound and Vibration, 1984,97(3):429-449
    145 Dokainish MA, Rawtani S . Vibration analysis of rotating cantilever plates. International Journal for Numerical Methods in Engineering, 1971,3(2):233-248
    146 Zhao J, Tian Q, Hu HY . Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics, 2011,6(4):041013
    147 Zhang XS, Zhang DG, Chen SJ , et al. Modal characteristics of a rotating flexible beam with a concentrated mass based on the absolute nodal coordinate formulation. Nonlinear Dynamics, 2017,88(1):61-77
    148 Lin SC, Hsiao KM . Vibration analysis of a rotating Timoshenko beam. Journal of Sound and Vibration, 2001,240(2):303-322
    149 Fan W, Zhu WD, Zhu H . Dynamic analysis of a rotating planar Timoshenko beam using an accurate global spatial discretization method. Journal of Sound and Vibration, 2019,457:261-279
    150 Liu J, Li Q, Liu S , et al. Dynamic topology optimization design of rotating beam cross-section with gyroscopic effects. Structural and Multidisciplinary Optimization, 2018,58(4):1467-1487
    151 Pedersen NL . Maximization of eigenvalues using topology optimization. Structural and Multidisciplinary Optimization, 2000,20(1):2-11
    152 Tcherniak D . Topology optimization of resonating structures using SIMP method. International Journal for Numerical Methods in Engineering, 2002,54(11):1605-1622
    153 Ferrari F, Lazarov BS, Sigmund O . Eigenvalue topology optimization via efficient multilevel solution of the frequency response. International Journal for Numerical Methods in Engineering, 2018,115(7):872-892
    154 Thomsen CR, Wang F, Sigmund O . Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis. Computer Methods in Applied Mechanics and Engineering, 2018,339:115-136
    155 Sun JL, Tian Q, Hu HY , et al. Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components. Journal of Sound and Vibration, 2019,448:83-107
    156 丁洁玉 . 基于多体系统的灵敏度分析及动态优化设计. [博士论文]. 上海: 上海大学, 2008
    156 ( Ding Jieyu . Sensitivity analysis and design optimization of multibody systems. [PhD Thesis]. Shanghai: Shanghai University, 2008 (in Chinese))
    157 皮霆 . 柔性多体系统动力学及其设计灵敏度分析. [博士论文]. 武汉:华中科技大学, 2011
    157 ( Pi Ting . Flexible multibody system dynamics and its design sensitivity analysis. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese))
    158 Greene WH, Haftka RT . Computational aspects of sensitivity calculations in transient structural analysis. Computers & Structures, 1989,32(2):433-443
    159 Chang CO, Nikravesh PE . Optimal design of mechanical systems with constraint violation stabilization method. Journal of Mechanisms, Transmissions, and Automation in Design, 1985,107:493
    160 Haug EJ, Arora JS . Design sensitivity analysis of elastic mechanical systems. Computer Methods in Applied Mechanics and Engineering, 1978,15(1):35-62
    161 Bischof C, Khademi P, Mauer A , et al. ADIFOR 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science and Engineering, 1996,3(3):18-32
    162 Bischof C, Carle A, Corliss G , et al. ADIFOR-generating derivative codes from Fortran programs. Scientific Programming, 1992,1(1):11-29
    163 Griewank A, Reese S . On the calculation of Jacobian matrices by the Markowitz rule. No. ANL/CP-75176; CONF-910189-4. Argonne National Lab, IL (United States), 1991
    164 Mukherjee RM, Bhalerao KD, Anderson KS . A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Structural and Multidisciplinary Optimization, 2008,35(5):413-429
    165 Wang X, Haug EJ, Pan W . Implicit numerical integration for design sensitivity analysis of rigid multibody systems. Mechanics Based Design of Structures and Machines, 2005,33(1):1-30
    166 Hsu Y, Anderson KS . Recursive sensitivity analysis for constrained multi-rigid-body dynamic systems design optimization. Structural and Multidisciplinary Optimization, 2002,24(4):312-324
    167 Anderson KS, Hsu YH . Analytical fully-recursive sensitivity analysis for multibody dynamic chain systems. Multibody System Dynamics, 2002,8(1):1-27
    168 Serban R, Haug EJ . Kinematic and kinetic derivatives in multibody system analysis. Journal of Structural Mechanics, 1998,26(2):145-173
    169 Dias J, Pereira M . Sensitivity analysis of rigid-flexible multibody systems. Multibody System Dynamics, 1997,1(3):303-322
    170 Pagalday JM, Avello A . Optimization of multibody dynamics using object oriented programming and a mixed numerical-symbolic penalty formulation. Mechanism and Machine Theory, 1997,32(2):161-174
    171 Kim MS, Choi DH . Multibody dynamic response optimization with ALM and approximate line search. Multibody System Dynamics, 1997,1(1):47-64
    172 Ashrafiuon H, Mani NK . Analysis and optimal design of spatial mechanical systems. Journal of Mechanical Design, 1990,112(2):200-207
    173 Neto MA, Ambrósio JAC, Leal RP . Sensitivity analysis of flexible multibody systems using composite materials components. International Journal for Numerical Methods in Engineering, 2009,77(3):386-413
    174 潘振宽, 丁洁玉, 高磊 . 多体系统动力学设计灵敏度分析直接微分法. 力学与实践, 2005,27(1):60-63
    174 ( Pan Zhenkuan, Ding Jieyu, Gao Lei . Direct differentiation method for design sensitivity analysis of multibody system dynamics. Mechanics in Engineering, 2005,27(1):60-63 (in Chinese))
    175 陆婕, 丁洁玉 . 多体系统动力学设计灵敏度分析的直接微分方法. 青岛大学学报(工程技术版), 2004,19(4):76-79
    175 ( Lu Jie, Ding Jieyu . The direct differentiation method for sensitivity analysis of multibody system dynamics. Journal of Qingdao University (E&T), 2004,19(4):76-79 (in Chinese))
    176 Callejo A, Dopico D . Direct sensitivity analysis of multibody systems: A vehicle dynamics benchmark. Journal of Computational and Nonlinear Dynamics, 2019,14(2):021004
    177 Tu T, Wang G, Rui X , et al. Direct differentiation method for sensitivity analysis based on transfer matrix method for multibody systems. International Journal for Numerical Methods in Engineering, 2018,115(13):1601-1622
    178 Dopico D, Zhu Y, Sandu A , et al. Direct and adjoint sensitivity analysis of ordinary differential equation multibody formulations. Journal of Computational and Nonlinear Dynamics, 2015,10(1):011012
    179 Li X, Wang Y . Sensitivity analysis approach to multibody systems described by natural coordinates. Chinese Journal of Mechanical Engineering, 2014,27(2):402-410
    180 Bhalerao KD, Poursina M, Anderson KS . An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody System Dynamics, 2010,23(2):121-140
    181 Dopico D, González F, Luaces A , et al. Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented Lagrangian formulation with projections. Nonlinear Dynamics, 2018,93(4):2039-2056
    182 Serban R, Freeman JS . Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody System Dynamics, 2001,5(4):335-350
    183 丁洁玉, 潘振宽, 陈立群 . 基于微分/代数方程的多体系统动力学设计灵敏度分析的伴随变量方法. 动力学与控制学报, 2006(3):205-209
    183 ( Ding Jieyu, Pan Zhenkuan, Chen Liqun . Adjiont variable method for sensitivity analysis of multibody system dynamics described by differential/algebraic equations. Journal of Dynamics and Control, 2006,4(3):205-209 (in Chinese))
    184 丁洁玉, 潘振宽 . 基于二阶常微分方程的多体系统动力学设计灵敏度分析的伴随变量方法. 工程力学, 2006,23(2):56-59
    184 ( Ding Jieyu, Pan Zhenkuan . Adjoint variable method for design sensitivity analysis of multibody system dynamics described by ordinary differential equations. Engineering Mechanics, 2006,23(2):56-59 (in Chinese))
    185 Cao Y, Li S, Petzold L . Adjoint sensitivity analysis for differential-algebraic equations: Algorithms and software. Journal of Computational and Applied Mathematics, 2002,149(1):171-191
    186 Li S, Petzold L, Zhu W . Sensitivity analysis of differential-algebraic equations: A comparison of methods on a special problem. Applied Numerical Mathematics, 2000,32(2):161-174
    187 Etman LFP, Van Campen DH, Schoofs AJG . Design optimization of multibody systems by sequential approximation. Multibody System Dynamics, 1998,2(4):393-415
    188 Liu X . Sensitivity analysis of constrained flexible multibody systems with stability considerations. Mechanism and Machine Theory, 1996,31(7):859-863
    189 Bestle D, Seybold J . Sensitivity analysis of constrained multibody systems. Archive of Applied Mechanics, 1992,62(3):181-190
    190 Haug EJ, Wehage RA, Mani NK . Design sensitivity analysis of large-scale constrained dynamic mechanical systems. Journal of Mechanisms, Transmissions, and Automation in Design, 1984,106(2):156-162
    191 Haug EJ, Ehle PE . Second-order design sensitivity analysis of mechanical system dynamics. International Journal for Numerical Methods in Engineering, 1982,18(11):1699-1717
    192 Haug EJ, Wehage R, Barman NC . Design sensitivity analysis of planar mechanism and machine dynamics. Journal of Mechanical Design, 1981,103(3):560-570
    193 Callejo A, Sonneville V, Bauchau OA . Discrete adjoint method for the sensitivity analysis of flexible multibody systems. Journal of Computational and Nonlinear Dynamics, 2019,14(2):021001
    194 Zhu Y, Dopico D, Sandu C , et al. Dynamic response optimization of complex multibody systems in a penalty formulation using adjoint sensitivity. Journal of Computational and Nonlinear Dynamics, 2015,10(3):031009
    195 Cao Y, Li S, Petzold LR , et al. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution. SIAM Journal on Scientific Computing, 2003,24(3):1076-1089
    196 Ding JY, Pan ZK, Chen LQ . Second-order sensitivity analysis of multibody systems described by differential/algebraic equations: Adjoint variable approach. International Journal of Computer Mathematics, 2008,85(6):899-913
    197 Ding JY, Pan ZK, Chen LQ . Second order adjoint sensitivity analysis of multibody systems described by differential-algebraic equations. Multibody System Dynamics, 2007, (184): 599-617
    198 Pi T, Zhang YQ, Chen LP . First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation. Multibody System Dynamics, 2012,27(2):153-171
    199 Banerjee JM, Mcphee JJ . Graph-theoretic sensitivity analysis of multibody systems. Journal of Computational and Nonlinear Dynamics, 2014,9(4):041009
    200 Jensen JS, Pedersen NL . On maximal eigenfrequency separation in two-material structures: The 1D and 2D scalar cases. Journal of Sound and Vibration, 2006,289(4-5):967-986
    201 Pedersen NL . On topology optimization of plates with prestress. International Journal for Numerical Methods in Engineering, 2001,51:225-239
    202 Seyranian AP, Lund E, Olhoff N . Multiple eigenvalues in structural optimization problems. Structural Optimization, 1994,8(4):207-227
    203 Torii AJ, Faria JRD . Structural optimization considering smallest magnitude eigenvalues: A smooth approximation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017,39(5):1745-1754
    204 Gravesen J, Evgrafov A, Nguyen DM . On the sensitivities of multiple eigenvalues. Structural and Multidisciplinary Optimization, 2011,44(4):583-587
    205 Chen X, Qi H, Qi L , et al. Smooth convex approximation to the maximum eigenvalue function. Journal of Global Optimization, 2004,30(2):253-270
    206 Nelson RB . Simplified calculation of eigenvector derivatives. AIAA Journal, 1976,14(9):1201-1205
    207 Pedersen NL . Design of cantilever probes for Atomic Force Microscopy (AFM). Engineering Optimization, 2000,32(3):373-392
    208 Wang BP . Improved approximate methods for computing eigenvector derivatives in structural dynamics. AIAA Journal, 1991,29(6):1018-1020
    209 Ting T . Accelerated subspace iteration for eigenvector derivatives. AIAA Journal, 1992,30(8):2114-2118
    210 Beliveau J, Cogan S, Lallement G , et al. Iterative least-squares calculation for modal eigenvector sensitivity. AIAA Journal, 1996,34(2):385-391
    211 Wu B, Xu Z, Li Z . Improved Nelson's method for computing eigenvector derivatives with distinct and repeated eigenvalues. AIAA Journal, 2007,45(4):950-952
    212 H?ussler P, Albers A . Shape optimization of structural parts in dynamic mechanical systems based on fatigue calculations. Structural and Multidisciplinary Optimization, 2005,29(5):361-373
    213 Chaudhary K, Chaudhary H . Shape optimization of dynamically balanced planar four-bar mechanism. Procedia Computer Science, 2015,57:519-526
    214 李芳, 凌道盛 . 工程结构优化设计发展综述. 工程设计学报, 2002,9(5):229-235
    214 ( Li Fang, Ling Daosheng . Survey of the developing in engineering structural optimization design. Journal of Engineering Design, 2002,9(5):229-235 (in Chinese))
    215 Bendsoe MP, Kikuchi N . Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 1988,71(2):197-224
    216 Hassani B, Hinton E . A review of homogenization and topology optimization I--Homogenization theory for media with periodic structure. Computers and Structures, 1998,69:707-717
    217 Hassani B, Hinton E . A review of homogenization and topology opimization II--Analytical and numerical solution of homogenization equations. Computers and Structures, 1998,69:719-738
    218 Hassani B, Hinton E . A review of homogenization and topology optimization III--Topology optimization using optimality criteria. Computers and Structures, 1998,69:739-756
    219 Rozvany G . A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization, 2009,37:217-237
    220 Deaton JD, Grandhi RV . A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Structural and Multidisciplinary Optimization, 2014,49(1):1-38
    221 Sigmund O, Maute K . Topology optimization approaches: a comparative review. Structural and Multidisciplinary Optimization, 2013,48(6):1031-1055
    222 van Dijk NP, Maute K, Langelaar M , et al. Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization, 2013,48(3):437-472
    223 Xia L, Xia Q, Huang X , et al. Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review. Archives of Computational Methods in Engineering, 2018,25(2):437-478
    224 Held A, Seifried R . Topology optimization of members of elastic multibody systems. Proceedings in Applied Mathematics and Mechanics, 2012,12(1):67-68
    225 Ghandriz T, Führer C, Elmqvist H . Structural topology optimization of multibody systems. Multibody System Dynamics, 2017,39(1-2):135-148
    226 Bendsoe MP . Optimal shape design as a material distribution problem. Structural Optimization, 1989,1(4):193-202
    227 Zhou M, Rozvany GIN . The COC algorithm, part II: topological, geometry and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 1991,89(1-3):309-336
    228 Mlejnek HP . Some aspects of the genesis of structures. Structural Optimization, 1992,5(1-2):64-69
    229 Bendsoe MP, Sigmund O . Material interpolation schemes in topology optimization. Archive of Applied Mechanics, 1999,69(9-10):635-654
    230 Stolpe M, Svanberg K . An alternative interpolation scheme for minimum compliance optimization. Structural and Multidisciplinary Optimization, 2001,22(2):116-124
    231 Pedersen P, Pedersen NL . Interpolation/penalization applied for strength design of 3D thermoelastic structures. Structural and Multidisciplinary Optimization, 2012,45(6):773-786
    232 Sethian JA, Wiegmann A . Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 2000,163(2):489-528
    233 Osher S, Santosa F . Level set methods for optimization problems involving geometry and constrains I. Frequencies of a two-density inhomogeneous drum. Journal of Computational Physics, 2001,171:272-288
    234 Wang MY, Wang XM, Guo DM . A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 2003,192:227-246
    235 Allaire G, Jouve F, Toader A . Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics, 2004,194(1):363-393
    236 Luo JZ, Luo Z, Chen LP , et al. A semi-implicit level set method for structural shape and topology optimization. Journal of Computational Physics, 2008,227(11):5561-5581
    237 Guo X, Zhang W, Zhong W . Doing topology optimization explicitly and geometrically--A new moving morphable components based framework. Journal of Applied Mechanics, 2014,81(8):081009
    238 Zhang W, Chen J, Zhu X , et al. Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2017,322:590-614
    239 Hou W, Gai Y, Zhu X , et al. Explicit isogeometric topology optimization using moving morphable components. Computer Methods in Applied Mechanics and Engineering, 2017,326:694-712
    240 Xue R, Liu C, Zhang W , et al. Explicit structural topology optimization under finite deformation via moving morphable void (MMV) approach. Computer Methods in Applied Mechanics and Engineering, 2019,344:798-818
  • 期刊类型引用(33)

    1. 陈渊钊,朱健成,吴文军,杜晓康,章定国. 浮动坐标系下大变形柔性梁的变形梯度单元. 力学学报. 2025(01): 249-260 . 本站查看
    2. 冯涛,张庆君,林坤阳,王立朋,张桥,杨军刚,肖勇. 星载大口径环形天线的系统设计. 中国空间科学技术(中英文). 2025(01): 24-33 . 百度学术
    3. 胡海岩,田强,文浩,罗凯,马小飞. 极大空间结构在轨组装的动力学与控制. 力学进展. 2025(01): 1-29 . 百度学术
    4. 翁剑成,陈虹微,杨元慧,臧克江,刘亚丹,林俊. 机械臂K因子影响因数的研究和扩展寿命计算. 龙岩学院学报. 2024(02): 29-36 . 百度学术
    5. 吴志刚,蒋建平,邬树楠,李庆军,王兴,谭述君,邓子辰. 航天结构空间组装动力学与控制研究进展. 力学进展. 2024(02): 344-390 . 百度学术
    6. 肖正明,康振辉,伍星,刘韬,王建. 空间并联机器人动力学分析与驱动参数匹配. 昆明理工大学学报(自然科学版). 2024(03): 127-136 . 百度学术
    7. 李浦,逯代兴. 协同仿真算法研究综述. 机械工程学报. 2024(19): 172-186 . 百度学术
    8. 王兴东,柯蕃,孔建益,吴宗武. 低耗稳定的四间隙平面连杆多目标优化设计. 组合机床与自动化加工技术. 2024(12): 30-34+40 . 百度学术
    9. 张硕,杨洋,李媛媛,葛玉梅,杨翊仁. 多体柔性机械臂的非线性能量阱被动控制研究. 四川轻化工大学学报(自然科学版). 2023(01): 33-40 . 百度学术
    10. 龚浩然,王博,李庆军,吴志刚,邓子辰. 太阳光压与地球阴影作用下的空间柔性梁结构振动分析与控制. 振动工程学报. 2023(04): 988-995 . 百度学术
    11. 刘凉,汪博深,冯建峰,赵新华. 含柔性动平台并联机器人动力学建模方法研究. 农业机械学报. 2023(12): 417-430 . 百度学术
    12. 张智豪,于潇雁. 存在关节死区的空间机器人无扰快速终端滑模控制. 力学学报. 2022(03): 777-785 . 本站查看
    13. 竺伟梁,庞兆君,司骥跃,杜忠华,程春. 脉冲展开式飞网质量分布与展开稳定性优化. 宇航学报. 2022(09): 1208-1218 . 百度学术
    14. 王庚祥,马道林,刘洋,刘才山. 多体系统碰撞动力学中接触力模型的研究进展. 力学学报. 2022(12): 3239-3266 . 本站查看
    15. 满万鑫,李新洪,周思引,王训,张治彬. 空间目标在轨捕获方法及关键技术综述. 空天技术. 2022(06): 77-96 . 百度学术
    16. 薛纭,陈立群. Kirchhoff动力学比拟对弹性薄壳的推广. 力学学报. 2021(01): 234-247 . 本站查看
    17. 汤惠颖,张志娟,刘铖,刘绍奎. 两类基于局部标架梁单元的闭锁缓解方法. 力学学报. 2021(02): 482-495 . 本站查看
    18. 张大羽,罗建军,王辉,马小飞. ANCF/CRBF平面梁闭锁问题及闭锁缓解研究. 力学学报. 2021(03): 874-889 . 本站查看
    19. 祝世兴,杨丽昆,魏戬,祝恒佳. 基于改进Bingham模型的磁流变阻尼器力学建模及试验研究. 重庆理工大学学报(自然科学). 2021(04): 254-264 . 百度学术
    20. 高山,史东华,郭永新. Hamel框架下几何精确梁的离散动量守恒律. 力学学报. 2021(06): 1712-1719 . 本站查看
    21. 李韶华,冯桂珍,丁虎. 考虑胎路多点接触的电动汽车-路面耦合系统振动分析. 力学学报. 2021(09): 2554-2568 . 本站查看
    22. 张国斌,张青斌,丰志伟,陈青全,杨涛. 软式空中加油对接约束力不确定性分析. 航空学报. 2021(09): 303-317 . 百度学术
    23. 罗操群,孙加亮,文浩,胡海岩,金栋平. 多刚体系统分离策略及释放动力学研究. 力学学报. 2020(02): 503-513 . 本站查看
    24. 宋新宇,戈新生. 挠性航天器动力学模型的非约束模态分析. 力学学报. 2020(04): 954-964 . 本站查看
    25. 王震,祝恒佳,陈晓宇,张云清. 基于交叉型双气室空气互联悬架的全地形车侧倾特性研究. 力学学报. 2020(04): 996-1006 . 本站查看
    26. 姚文莉,刘彦平,杨流松. 基于高斯原理的非理想系统动力学建模. 力学学报. 2020(04): 945-953 . 本站查看
    27. 艾海平,陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报. 2020(04): 975-984 . 本站查看
    28. 李海波,刘世兴,宋海燕,梁立孚. 非保守非线性刚-弹-液-控耦合分析动力学及其应用研究. 力学学报. 2020(04): 932-944 . 本站查看
    29. 王立安,赵建昌,王作伟. 汽车行驶诱发地表振动的解析研究. 力学学报. 2020(05): 1509-1518 . 本站查看
    30. 李海泉,梁建勋,吴爽,刘茜,张文明. 空间机械臂柔性捕获机构建模与实验研究. 力学学报. 2020(05): 1465-1474 . 本站查看
    31. 沈涛,张崇峰,王卫军,冯文博,邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究. 力学学报. 2020(06): 1590-1598 . 本站查看
    32. 司震,钱霙婧,杨晓东,张伟. 基于参激共振的受摄小行星悬停轨道设计方法. 力学学报. 2020(06): 1774-1788 . 本站查看
    33. 郭祥,靳艳飞,田强. 随机空间柔性多体系统动力学分析. 力学学报. 2020(06): 1730-1742 . 本站查看

    其他类型引用(46)

计量
  • 文章访问数:  4937
  • HTML全文浏览量:  1063
  • PDF下载量:  1602
  • 被引次数: 79
出版历程
  • 收稿日期:  2019-08-04
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回