EI、Scopus 收录
中文核心期刊

基于时域解耦算法的多液舱浮式结构物运动模拟

张崇伟, 宁德志

张崇伟, 宁德志. 基于时域解耦算法的多液舱浮式结构物运动模拟[J]. 力学学报, 2019, 51(6): 1650-1665. DOI: 10.6052/0459-1879-19-210
引用本文: 张崇伟, 宁德志. 基于时域解耦算法的多液舱浮式结构物运动模拟[J]. 力学学报, 2019, 51(6): 1650-1665. DOI: 10.6052/0459-1879-19-210
Zhang Chongwei, Ning Dezhi. MOTION SIMULATION OF FLOATING STRUCTURE WITH MULTIPLE SLOSHING TANKS BASED ON TIME-DOMAIN DECOUPLING ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1650-1665. DOI: 10.6052/0459-1879-19-210
Citation: Zhang Chongwei, Ning Dezhi. MOTION SIMULATION OF FLOATING STRUCTURE WITH MULTIPLE SLOSHING TANKS BASED ON TIME-DOMAIN DECOUPLING ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1650-1665. DOI: 10.6052/0459-1879-19-210
张崇伟, 宁德志. 基于时域解耦算法的多液舱浮式结构物运动模拟[J]. 力学学报, 2019, 51(6): 1650-1665. CSTR: 32045.14.0459-1879-19-210
引用本文: 张崇伟, 宁德志. 基于时域解耦算法的多液舱浮式结构物运动模拟[J]. 力学学报, 2019, 51(6): 1650-1665. CSTR: 32045.14.0459-1879-19-210
Zhang Chongwei, Ning Dezhi. MOTION SIMULATION OF FLOATING STRUCTURE WITH MULTIPLE SLOSHING TANKS BASED ON TIME-DOMAIN DECOUPLING ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1650-1665. CSTR: 32045.14.0459-1879-19-210
Citation: Zhang Chongwei, Ning Dezhi. MOTION SIMULATION OF FLOATING STRUCTURE WITH MULTIPLE SLOSHING TANKS BASED ON TIME-DOMAIN DECOUPLING ALGORITHM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1650-1665. CSTR: 32045.14.0459-1879-19-210

基于时域解耦算法的多液舱浮式结构物运动模拟

基金项目: 1) 国家自然科学基金(51709038);国家自然科学基金(51679036);中国博士后科学基金(2019T120209);中国博士后科学基金(2018M630289);中央高校基本科研业务费专项资金资助项目(DUT19RC(4)027)
详细信息
    通讯作者:

    宁德志

  • 中图分类号: U661.1

MOTION SIMULATION OF FLOATING STRUCTURE WITH MULTIPLE SLOSHING TANKS BASED ON TIME-DOMAIN DECOUPLING ALGORITHM

  • 摘要: 对于带有多个晃荡液舱的浮式结构物, 浮体的运动、外场水动力以及各舱内的液体晃荡力会实时相互决定, 发生复杂的耦合作用. 为准确模拟多液舱浮式结构物的运动, 本文引入一种有效的时域解耦算法. 该方法以模态分解法为基础, 通过对浮式结构物所受外域水动力和各液舱内非线性晃荡力进行模态分解, 最终形成时域解耦运动方程, 无需迭代求解过程即可显式计算浮式结构物的瞬时加速度. 该方法可避免传统迭代求解方法在迭代次数、截断误差和收敛特性等方面的不足, 减少解耦过程的计算耗时. 本文进一步结合边界元数值方法, 分别对单液舱浮式结构物和多液舱浮式结构物的工况开展数值模拟研究. 通过与单液舱浮式结构物的实验结果对比, 验证了本文时域解耦算法的有效性. 本文详细分析了晃荡力对单液舱浮式结构物运动的影响, 发现存在一个共振影响区间: 当外场波浪频率在该区间之外时, 可以在时域计算结果中观察到稳定的浮体运动; 在比该区间更低频的波况下, 液舱晃荡力与外场波浪力相位相反甚至可以相互抵消, 此时晃荡液舱的存在可以减弱浮体运动; 在比该区间更高频的波况下, 液舱内晃荡力与外场波浪力可以具有相同相位, 此时晃荡液舱的存在会加剧浮体的运动. 本文进一步研究了四液舱浮式结构物在波浪中的纵荡、垂荡和纵摇运动情况, 发现非线性液舱晃荡可对纵荡和纵摇运动产生影响, 但对垂荡运动影响很小.
    Abstract: For a floating structure with multiple sloshing tanks, the structure motion, external hydrodynamics and sloshing dynamics of liquid tanks are mutually determined with complex coupling mechanism. This study introduces an effective time-domain decoupling algorithm for an accurate motion simulation of floating structure with multiple sloshing tanks. The algorithm is derived based on the modal decomposition approach. By decomposing the external hydrodynamic force and nonlinear sloshing forces in each liquid tank of the floating structure, this study gives a time-domain decoupling motion equation. With this algorithm, the instantaneous acceleration of a floating structure at any instant is calculated explicitly without iterations. Limitations of the conventional iterative method in terms of the iteration number, truncation errors and numerical convergences can be avoided. The CPU time consumption on dealing with the coupling effects can be greatly reduced. Combined with the boundary element method, the algorithm is applied to time-domain simulations of a floating structure with either a single liquid tank or multiple tanks. For single-tank cases, the time-domain decoupling algorithm is validated by comparing with the experimental measurements. This study first analyzes effects of the sloshing dynamics on a single-tank floating structure. A specific frequency range is found, outside which the floating structure shows a steady motion in the time domain. For lower wave frequency cases around this range, the sloshing force and external wave force can be in anti-phase or even cancelled, so that the motion of the structure is weakened. For higher wave frequency cases, the sloshing force can be in the same phase with the external wave force, and the liquid sloshing can eventually amplify the structure motion. Further, a floating structure with four liquid tanks is further investigated. It shows that the nonlinear sloshing forces can affect the surge and pitch motion of the structure, but with little effect on the heave motion.
  • 1 BP. BP Energy Outlook (2019 edition). London: BP PLC, 2019
    2 Schenk CJ, Brownfield ME, Charpentier RR , et al. Assessment of undiscovered oil and gas resources of southeast Asia. U.S. Geological Survey Fact Sheet 2010-3015, 2010
    3 潘建纲 . 南海油气资源及其开发展望. 海洋论坛, 2002,3:39-49
    3 ( Pan Jiangang . Hydrocarbon resources and its development prospect in the South China sea. Marine Forum, 2002,3:39-49 (in Chinese))
    4 Molin B, Remy F, Rigaud S , et al. LNG-FPSO’s: Frequency domain, coupled analysis of support and liquid cargo motion//IMAM Conference, Rethymnon, Greece, 2002
    5 Malenica S, Zalar M, Chen XB . Dynamic coupling of seakeeping and sloshing//Proceedings of 13th ISOPE, Honolulu, Hawaii, USA, 2003
    6 Newman JN . Wave effects on vessels with internal tanks//20th IWWWFB, Longyearbyen, Norway, 2005
    7 Rognebakke OF, Faltinsen OM . Effect of sloshing on ship motions//16th IWWWFB, Hiroshima, Japan, 2001
    8 Kim Y . A numerical study on sloshing flows coupled with ship motion: The anti-rolling tank problem. Journal of Ship Research, 2002,46:52-62
    9 Nam BW, Kim Y, Kim DW . Nonlinear effects of sloshing flows on ship motion//21th IWWWFB, 2006
    10 Kim Y, Nam BW, Kim DW , et al. Study on coupling effects of ship motion and sloshing. Ocean Engineering, 2007,34:2176-2187
    11 Lee SJ, Kim HM, Lee DH , et al. The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Engineering, 2007,34(1):10-20
    12 Lee SJ . The effects of LNG-sloshing on the global responses of LNG-carriers. [PhD Thesis]. Texas: Texas A&M University, 2008
    13 Wang X, Arai M . Research on computational method of coupled ship motions and sloshing. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2011,14:97-104
    14 Hashimoto H, Sueyoshi M . Numerical simulation method for a coupling motion of ship and tank fluid//25th IWWWFB, Harbin, China
    15 Li Y, Zhu R, Miao G . et al. Simulation of tank sloshing based on OpenFOAM and coupling with ship motions in time domain. Journal of Hydrodynamics, 2012,24(3):450-457
    16 Jiang S, Teng B, Bai W , et al. Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action. Ocean Engineering, 2015,108:140-154
    17 Mitra S, Wang CZ, Reddy JN , et al. A 3D fully coupled analysis of nonlinear sloshing and ship motion. Ocean Engineering, 2012,39:1-13
    18 Huang S, Duan W, Zhang H . A coupled analysis of nonlinear sloshing and ship motion. Journal of Marine Science and Application, 2012,11(4):427-436
    19 Zhao W, Yang J, Hu Z , et al. Coupled analysis of nonlinear sloshing and ship motions. Applied Ocean Research, 2014,47:85-97
    20 Zhang C . Analysis of liquid sloshing in LNG carrier with wedge-shaped tanks. Ocean Engineering, 2015,105:304-317
    21 Zhang C, Li Y, Meng Q . Fully nonlinear analysis of second-order sloshing resonance in a three-dimensional tank. Computers & Fluids, 2015,116:88-104
    22 Zhang C, Ning D, Teng B . Secondary resonance of liquid sloshing in square-base tanks undergoing the circular orbit motion. European Journal of Mechanics / B Fluids, 2018,72:235-250
    23 Yang C, Lohner R, Lu H . An unstructured-grid based volume-of-fluid method for extreme wave and freely-floating structure interactions//Conference of Global Chinese Scholars on Hydrodynamics, 2006
    24 Celebi MS, Akyildiz H . Nonlinear modeling of liquid sloshing in a moving rectangular tank. Ocean Engineering, 2002,29:1527-1553
    25 Zhang C . Numerical study of nonlinear sloshing and its coupling with vessel motions. [PhD Thesis]. London: University College London, 2016
    26 Cao Y, Beck RF, Schultz WW . Nonlinear computation of wave loads and motions of floating bodies in incident waves//9th IWWWFB, 1994
    27 Ma QW, Yan S . QALE-FEM for numerical modelling of non-linear interaction between 3D moored floating bodies and steep waves. International Journal for Numerical Methods in Engineering, 2008,78(6):713-756
    28 Van Daalen E . Numerical and theoretical studies of water waves and floating bodies. [PhD Thesis]. Netherlands: University of Twente, 1993
    29 Tanizawa K . A nonlinear simulation method of 3-D body motions in waves. Journal of the Japan Society of Naval Architects and Ocean Engineers, 1995,178:179-191
    30 Vinji T, Brevig P . Numerical simulation of breaking wave//3rd International Conference on Finite Elements in Water Resources, 1981
    31 Cointe R, Geyer P, King B , et al. Nonlinear and linear motions of a rectangular barge in a perfect fluid//18th Symposium on Naval Hydrodynamics, 1990
    32 Koo W, Kim M . Freely floating-body simulation by a 2D fully nonlinear numerical wave tank. Ocean Engineering, 2004,31(16):2011-2046
    33 Wu G, Eatock Taylor R . Transient motion of a floating body in steep water waves//11th IWWWFB, 1996
    34 Kashiwagi M, Momoda T, Inada M . A time-domain nonlinear simulation method for wave-induced motions of a floating body. Journal of the Japan Society of Naval Architects and Ocean Engineers, 1998,184:139-148
    35 Wu G, Hu Z . Simulation of nonlinear interactions between waves and floating bodies through a finite-element-based numerical tank. Proceedings of the Royal Society A, 2004,460:2797-2817
    36 Ogilvie T . Recent progress toward the understanding and prediction of ship motions//5th Symposium on Naval Hydrodynamics, 1964
    37 Babarit A . NEMOH BEM documentation. Technical Report, Ecole Centrale de Nantes, 2014
    38 Lee SJ, Kim MH . The effects of inner-liquid motion on LNG vessel responses. Journal of Offshore Mechanics and Arctic Engineering, 2010,132(2):021101-8
    39 朱跃, 姜胜耀, 杨星团 等. 粒子法中压力振荡的机理研究. 力学学报, 2018,50(3):688-698
    39 ( Zhu Yue, Jiang Shengyao, Yang Xingtuan , et al. Mechanism analysis of pressure oscillation in particle method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):688-698 (in Chinese))
    40 李翔, 张崇伟, 宁德志 等. 非周期波浪与直墙作用的非线性数值研究. 力学学报, 2017,49(5):1042-1049
    40 ( Li Xiang, Zhang Chongwei, Ning Dezhi , et al. Nonlinear numerical study of non-periodic waves acting on a vertical cliff. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1042-1049 (in Chinese))
    41 Zhang C, Duan W . Numerical study on a hybrid water wave radiation condition by a 3D boundary element method. Wave Motion, 2012,49:525-543
    42 刘晶波, 宝鑫, 谭辉 等. 波动问题中流体介质的动力人工边界. 力学学报, 2017,49(6):1418-1427
    42 ( Liu Jingbo, Bao Xin, Tan Hui , et al. Dynamical artificial boundary for fluid medium in wave motion problems. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1418-1427 (in Chinese))
  • 期刊类型引用(0)

    其他类型引用(3)

计量
  • 文章访问数:  1188
  • HTML全文浏览量:  214
  • PDF下载量:  154
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-07-29
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回