EI、Scopus 收录
中文核心期刊

面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计

童泽奇, 刘杨, 刘书田

童泽奇, 刘杨, 刘书田. 面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计[J]. 力学学报, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323
引用本文: 童泽奇, 刘杨, 刘书田. 面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计[J]. 力学学报, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323
Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323
Citation: Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. DOI: 10.6052/0459-1879-18-323
童泽奇, 刘杨, 刘书田. 面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计[J]. 力学学报, 2019, 51(2): 462-472. CSTR: 32045.14.0459-1879-18-323
引用本文: 童泽奇, 刘杨, 刘书田. 面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计[J]. 力学学报, 2019, 51(2): 462-472. CSTR: 32045.14.0459-1879-18-323
Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. CSTR: 32045.14.0459-1879-18-323
Citation: Zeqi Tong, Yang Liu, Shutian Liu. DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 462-472. CSTR: 32045.14.0459-1879-18-323

面向变厚度柔性轧制工艺的帽型梁横向冲击吸能优化设计

基金项目: 国家自然科学基金重点项目(11332004);高校基本科研业务费项目(DUT18ZD103);111引智计划项目(B14013)
详细信息
    作者简介:

    2) 刘书田,教授,研究方向:工程结构优化.E-mail: stliu@dlut.edu.cn

  • 中图分类号: U467.14,U463.83

DESIGN OPTIMIZATION OF TOP-HAT BEAM FOR ENERGY ABSORPTION UNDER TRANSVERSE CRASH BASED ON VARIABLE GAUGE ROLLING

  • 摘要: 作为汽车主要吸能构件的帽型梁的吸能提升设计是备受关注的问题.研究表明,通过优化薄壁结构的厚度可有效提升吸能性能,但复杂的厚度分布造成制造困难.针对可实现厚度调控的工艺,发展易制造的结构设计方法极为必要.本文基于变厚度柔性轧制工艺(variable gauge rolling, VGR)可实现厚度调控的特点,发展建立帽型梁横向冲击吸能优化设计方法.基于变厚度柔性轧制工艺生产的柔性轧制板(tailor rolled blanks, TRB)的特点,将受横向冲击的帽型薄壁梁设计成沿轴线分段变厚度、分段间设梯度过渡段的结构形式,通过调整各段厚度、分段位置和过渡层梯度变化规律,实现性能的优化.以应变能密度分布均匀为优化准则、基于混合元胞自动机(hybird cellular automata, HCA)方法构建优化模型和求解方法,并在迭代过程中施加满足轧制约束的过滤函数,使结构满足轧制工艺要求.其中,轧制约束的过滤函数由粒子群算法自动寻找.基于本文方法,具体设计了柔性轧制帽型梁横向冲击吸能最优的分段位置、各段厚度及过渡段厚度的梯度过渡方式,设计结果验证了方法的有效性.
    Abstract: As one of the main thin-walled energy absorption structure in automobile, the top-hat beam draws great attention and its performance improvement is a concerning issue. Research indicates that the energy absorption performance of thin-walled structures can be improved by the wall thickness optimization. However, complicated thickness distribution would cause manufacturing difficulties. Thus, it is urgent to develop a design optimization method of structural thickness distribution based on specific manufactory process technology. In this paper, a design optimization method is proposed for maximizing the energy absorption of top-hat beam under transverse crash manufactured by variable gauge rolling technology. This top-hat beam is made of tailor rolled blanks, and can be classified as uniform thickness sections and transition sections. Through adjusting the length and thickness of the uniform section, and the description of the transition section, the performance of the structure can be optimized. To find the optimal structure parameter, we use the hybrid cellular automata to determine the optimization direction. To meet the variable gauge rolling constraint, the structure is filtered in the iteration. Based on this method, we studied an example of top-hat beam and found its optimized section length, thickness and transition description, which shows the effectiveness of this method.
  • [1] White M, Jones N, Abramowicz W . A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections. International Journal of Mechanical Sciences, 1999,41(2):209-233
    [2] White M, Jones N . Experimental study into the energy absorbing characteristics of top-hat and double-hat sections subjected to dynamic axial crushing. Journal of Automobile Engineering, 1999,213(3):259-278
    [3] Qi C, Sun Y, Hu HT , et al. On design of hybrid material double-hat thin-walled beams under lateral impact. International Journal of Mechanical Sciences, 2016,118:21-35
    [4] Fan Z, Lu G, Liu K . Quasi-static axial compression of thin-walled tubes with different cross-sectional shapes. Engineering Structures, 2013,55(4):80-89
    [5] Ding X, Tong Z, Liu Y , et al. Dynamic axial crush analysis and design optimization of a square multi-cell thin-walled tube with lateral variable thickness. International Journal of Mechanical Sciences, 2018,140:13-26
    [6] Zhang X, Zhang H, Leng K . Experimental and numerical investigation on bending collapse of embedded multi-cell tubes. Thin-Walled Structures, 2018,127:728-740
    [7] Zhang X, Cheng G, You Z , et al. Energy absorption of axially compressed thin-walled square tubes with patterns. Thin-Walled Structures, 2007,45:737-746
    [8] Nikkhah H, Guo F, Chew Y , et al. The effect of different shapes of holes on the crushing characteristics of aluminum square windowed tubes under dynamic axial loading. Thin-Walled Structures, 2017,119:412-420
    [9] Song X, Sun G, Li G , et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Structural and Multidisciplinary Optimization, 2013,47:221-231
    [10] Reddy T, Wall R . Axial compression of foam-filled thin-walled circular tubes. International Journal of Impact Engineering, 1988,7:151-166
    [11] Li Z, Duan L, Chen T , et al. Crashworthiness analysis and multi-objective design optimization of a novel lotus root filled tube (LFT). Structural and Multidisciplinary Optimization, 2018,57:865-875
    [12] Zheng G, Pang T, Sun G , et al. Theoretical, numerical, and experimental study on laterally variable thickness (LVT): Multi-cell tubes for crashworthiness. International Journal of Mechanical Sciences, 2016,118:283-297
    [13] Sun G, Pang T, Xu C , et al. Energy absorption mechanics for variable thickness thin-walled structures. Thin-Walled Structures, 2017,118:214-228
    [14] Sun G, Xu F, Li G , et al. Crashing analysis and multiobjective optimization for thin-walled structures with functionally graded thickness. International Journal of Impact Engineering, 2014,64:62-74
    [15] Ding C, Cui X, Li G . Accurate analysis and thickness optimization of tailor rolled blanks based on isogeometric analysis. Structural and Multidisciplinary Optimization, 2016,54:871-887
    [16] Mozumder C, Renaud J . Cost and mass optimization for crashworthiness design of shell-based structure using hybrid cellular automata//50th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, 2009: 2178
    [17] Merklein M, Johannes M, Lechner M , et al. A review on tailored blanks--Production, applications and evaluation. Journal of Materials Processing Technology, 2014,214:151-164
    [18] Sun G, Tan D, Lv X , et al. Multi-objective topology optimization of a vehicle door using multiple material tailor-welded blank (TWB): technology. Advances in Engineering Software, 2018,124:1-9
    [19] Liang J, Powers J, Stevens S . A tailor welded blanks design of automotive front rails by esl optimization for crash safety and lightweighting. SAE Technical Paper, 2018
    [20] Anand D, Chen D, Bhole S , et al. Fatigue behavior of tailor (laser)-welded blanks for automotive applications. Materials Science and Engineering: A, 2006,420:199-207
    [21] Kinsey B, Song N, Cao J. Analysis of clamping mechanism for tailor welded blank forming. SAE Transactions, 1999,
    [22] Hirt G, Abratis C, Ames J , et al. Manufacturing of sheet metal parts from tailor rolled blanks. Journal for Technology of Plasticity, 2005,30:1
    [23] Zhi Y, Wang X, Wang S , et al. A review on the rolling technology of shape flat products. The International Journal of Advanced Manufacturing Technology, 2018,94:4507-4518
    [24] Patel NM, Kang BS, Renaud JE . Crashworthiness design using a hybrid cellular automaton algorithm// ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2006: 151-162
    [25] Tovar A, Patel NM, Niebur GL , et al. Topology optimization using a hybrid cellular automaton method with local control rules. Journal of Mechanical Design, 2006,128:1205-1216
    [26] Duddeck F, Hunkeler S, Lozano P , et al. Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. Structural and Multidisciplinary Optimization, 2016,54:415-428
    [27] Gan N, Yao S, Xiong Y , et al. A hybrid cellular automaton-bi-directional evolutionary optimization algorithm for topological optimization of crashworthiness. Engineering Optimization, 2018,
    [28] Sun G, Tian J, Liu T , et al. Crashworthiness optimization of automotive parts with tailor rolled blank. Engineering Structures, 2018,169:201-215
    [29] Davoudi M, Kim C . Topology optimization for crashworthiness of thin-walled structures under axial crash considering nonlinear plastic buckling and locations of plastic hinges. Engineering Optimization, 2018: 1-21
    [30] 刘书田, 刘杨, 童泽奇 . 基于元胞自动机的变厚度薄壁梁侧向耐撞性优化设计方法. 计算力学学报, 2016,33(4):528-535
    [30] ( Liu Shutian, Liu Yang, Tong Zeqi . A hybrid cellular automata based method of variable thickness thin-walled beam for crashworthiness optimization under lateral impact. Chinese Journal of Computational Mechanics, 2016,33(4):528-535(in Chinese))
    [31] NHTS. Administration , Tile 49 Code of Federal Regulations Part 581, Bumper Standard. Washington, DC: National Archives and Records Administration, 1977
    [32] 张宗华 . 轻质吸能材料和结构的耐撞性分析与设计优化.[博士论文]. 大连: 大连理工大学, 2010
    [32] ( Zhang Zonghua . Crashworthiness analysis and design optimization of lightweight materials and structures for energy absorption. Dalian: [PhD Thesis]. Dalian University of Technology, 2010(in Chinese))
    [33] Zhang H, Sun G, Xiao Z , et al. Bending characteristics of top-hat structures through tailor rolled blank (TRB) process. Thin-Walled Structures, 2018,123:420-440
  • 期刊类型引用(4)

    1. 段利斌,周华锦,杜展鹏,张雨,徐伟,刘星,江浩斌. 基于SHCA-T算法的车身骨架多工况耐撞性优化设计. 汽车工程. 2023(02): 304-312 . 百度学术
    2. 郭鹤,张玉华. 基于MMC准则的双相高强钢HC820/1180DPD+Z断裂失效模型分析. 锻压技术. 2023(10): 235-244 . 百度学术
    3. 王帅,徐绯,代震,刘小川,李肖成,杨磊峰,惠旭龙. 结构冲击畸变问题的直接相似方法研究. 力学学报. 2020(03): 774-786 . 本站查看
    4. 陈有松,沈国民,段利斌. 可轧制约束下VRB薄壁结构的厚度分布优化方法研究. 汽车工程. 2020(12): 1728-1736 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1295
  • HTML全文浏览量:  178
  • PDF下载量:  127
  • 被引次数: 8
出版历程
  • 收稿日期:  2018-09-29
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回