[1] | 谢多夫. 连续介质力学. 李植译. 北京: 高等教育出版社, 2007 |
[1] | (Aleksandr Aleksandroviq Andronov.Continuum Mechanics, fransl. Li Zhi. Beijing: Higher Education Press, 2007 (in Chinese)) |
[2] | 黄克智, 程莉. 大变形弹塑性本构理论的几个基本问题. 力学学报, 1989, 21(s1): 7-17 |
[2] | (Huang Kezhi, Cheng Li.Some fundamental problems in elastic-plastic constitutive theory of finite deformation. Chin J Theor Appl Mech, 1989, 21(s1): 7-17 (in Chinese)) |
[3] | Bertram A.Elasticity and Plasticity of Large Deformations. Berlin,Heidelberg: Springer 2005 |
[4] | Lee EH.Elasto-plastic deformation at finite strain. Journal of Applied Mechanics, 1969, 36: 1-23 |
[5] | Lee EH, Mcmeeking RM.Concerning elastic and plastic components of deformation. International Journal of Solids & Structures, 1980, 16(8): 715-721 |
[6] | Brannon RM.Caveats concerning conjugate stress and strain measures for frame indifferent anisotropic elasticity. Acta Mechanica, 1998, 129(1-2): 107-116 |
[7] | Nemat-Nasser S.Decomposition of strain measures and their rates in finite deformation elastoplasticity. International Journal of Solids & Structures 1979, 15(2): 155-166 |
[8] | Nemat-Nasser S.On finite deformation elasto-plasticity. International Journal of Solids & Structures, 1982, 18(10): 857-872 |
[9] | Nemat-Nasser S.Certain basic issues in finite-deformation continuum plasticity. Meccanica, 1990, 24: 223-229 |
[10] | Schieck B, Stumpf H.Deformation analysis for finite elastic-plastic strains in a lagrangean-type description. International Journal of Solids & Structures, 1993, 30(19): 2639-2660 |
[11] | Ghavam K, Naghdabadi R.Hardening materials modeling in finite elastic--plastic deformations based on the stretch tensor decomposition. Materials & Design, 2008, 29(1): 161-172 |
[12] | Heidari M, Vafai A, Desai C.An Eulerian multiplicative constitutive model of finite elastoplasticity. European Journal of Mechanics-A Solids, 2009, 28(6): 1088-1097 |
[13] | Moran B, Ortiz M, Shih CF.Formulation of implicit finite element methods for multiplicative finite deformation plasticity. International Journal for Numerical Methods in Engineering, 2010, 29(3): 483-514 |
[14] | 王自强. 理性力学基础. 北京: 科学出版社, 2000 |
[14] | (Wang Ziqiang.Foundation of Rational Mechanics. Beijing: Science Press, 2000 (in Chinese)) |
[15] | Mandel J.Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. International Journal of Solids & Structures, 1973, 9(6): 725-740 |
[16] | Asaro RJ.Micromechanics of crystals and polycrystals. Advances in Appl Mech, 1983, 23(8): 1-115 |
[17] | Mandel J.Plasticité Elassique et Viscoplasticité. Vienna-New York: Springer-Verlag, 1972 |
[18] | Coleman BD, Noll W.The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity. The Foundations of Mechanics and Thermodynamics. Berlin, Heidelberg: Springer 1974: 167-178 |
[19] | Coleman BD, Gurtin ME.Thermodynamics with internal state variables. Journal of Chemical Physics, 2004, 47(2): 597-613 |
[20] | Lubliner J.Normality rules in large-deformation plasticity. Mechanics of Materials, 1986, 5(1): 29-34 |
[21] | Xiao H, Bruhns QT, Meyers A.A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient. International Journal of Plasticity, 2000, 16(2): 143-177 |
[22] | Xiao H, Bruhns QT, Meyers A.The integrability criterion in finite elastoplasticity and its constitutive implications. Acta Mechanica, 2007, 188(3-4): 227-244 |
[23] | Eidel B, Gruttmann F, Elastoplastic orthotropy at finite strains: Multiplicative formulation and numerical implementation. Computational Materials Science, 2003, 28: 732-742 |
[24] | Xiao H, Bruhns OT, Meyers A,Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica. 1997, 124: 89-105 |
[25] | Xiao H, Bruhns OT, Meyers A.Hypoelasticity model based upon the logarithmic stress rate. Journal of Elasticity, 1997, 47: 51-68 |
[26] | Xiao H, Bruhns OT, Meyers A.Elastoplasticity beyond small deformations. Acta Mechanica, 2006, 182: 31-111 |
[27] | Xiao H, Chen LS.Hencky's logarithmic strain and dual stress--strain and strain--stress relations in isotropic finite hyperelasticity. International Journal of Solids & Structures, 2003, 40(6): 1455-1463 |
[28] | Charlton DJ, Yang J, Teh KK.A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chemistry & Technology, 67.3(1994): 481-503 |
[29] | Frederick CO, Armstrong PJ.A mathematical representation of the multiaxial Bauschinger effect. High Temperature Technology, 2007, 24(1): 1-26 |
[30] | Dettmer W, Reese S.On the theoretical and numerical modelling of Armstrong--Frederick kinematic hardening in the finite strain regime. Computer Methods in Applied Mechanics & Engineering, 2004, 193(1): 87-116 |
[31] | Zheng QS.Theory of representations for tensor functions-A unified invariant approach to constitutive equations. Agronomy Journal, 1994, 47(11): 545 |
[32] | 兑关锁, 王正道, 金明. 各向同性张量函数的导数. 中国科学:物理学力学天文学, 2006, 36(1): 89-102 |
[32] | (Dui Guansuo, Wang Zhengdao, Jin Ming. The derivative of an isotropic tensor. Scientia Sinica Physica,Mechanica & Astronomica, 2006, 36(1): 89-102(in Chinese)) |
[33] | 王足. 连续介质力学中某些物理量的近似和大变形弹塑性定义的比较. [博士论文]. 北京:北京交通大学, 2010 |
[33] | (Wang Zu.The approximation of some variables and the comparison of elasto-plastic large deformation definitions in continuum mechanics. [PhD Thesis]. Beijing: Beijing Jiaotong University, 2010 (in Chinese)) |