EI、Scopus 收录
中文核心期刊

双频1:2激励下修正蔡氏振子两尺度耦合行为

夏雨, 毕勤胜, 罗超, 张晓芳

夏雨, 毕勤胜, 罗超, 张晓芳. 双频1:2激励下修正蔡氏振子两尺度耦合行为[J]. 力学学报, 2018, 50(2): 362-372. DOI: 10.6052/0459-1879-18-017
引用本文: 夏雨, 毕勤胜, 罗超, 张晓芳. 双频1:2激励下修正蔡氏振子两尺度耦合行为[J]. 力学学报, 2018, 50(2): 362-372. DOI: 10.6052/0459-1879-18-017
Xia Yu, Bi Qinsheng, Luo Chao, Zhang Xiaofang. BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362-372. DOI: 10.6052/0459-1879-18-017
Citation: Xia Yu, Bi Qinsheng, Luo Chao, Zhang Xiaofang. BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362-372. DOI: 10.6052/0459-1879-18-017
夏雨, 毕勤胜, 罗超, 张晓芳. 双频1:2激励下修正蔡氏振子两尺度耦合行为[J]. 力学学报, 2018, 50(2): 362-372. CSTR: 32045.14.0459-1879-18-017
引用本文: 夏雨, 毕勤胜, 罗超, 张晓芳. 双频1:2激励下修正蔡氏振子两尺度耦合行为[J]. 力学学报, 2018, 50(2): 362-372. CSTR: 32045.14.0459-1879-18-017
Xia Yu, Bi Qinsheng, Luo Chao, Zhang Xiaofang. BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362-372. CSTR: 32045.14.0459-1879-18-017
Citation: Xia Yu, Bi Qinsheng, Luo Chao, Zhang Xiaofang. BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 362-372. CSTR: 32045.14.0459-1879-18-017

双频1:2激励下修正蔡氏振子两尺度耦合行为

基金项目: 国家自然科学基金重点项目(11632008)和国家自然科学基金项目(11472115, 11472116)资助.
详细信息
    作者简介:

    *通讯作者:毕勤胜,教授,主要研究方向:动力学与控制. E-mail:qbi@ujs.edu.cn

    通讯作者:

    毕勤胜

  • 中图分类号: O322;

BEHAVIORS OF MODIFIED CHUA’S OSCILLATOR TWO TIME SCALES UNDER TWO EXCITATOINS WITH FREQUENCY RATIO AT 1:2

  • 摘要: 不同尺度耦合系统存在的复杂振荡及其分岔机理一直是当前国内外研究的热点课题之一. 目前相关工作大都是针对单频周期激励频域两尺度系统,而对于含有两个或两个以上周期激励系统尺度效应的研究则相对较少. 为深入揭示多频激励系统的不同尺度效应,本文以修正的四维蔡氏电路为例,通过引入两个频率不同的周期电流源,建立了双频1:2周期激励两尺度动力学模型. 当两激励频率之间存在严格共振关系,且周期激励频率远小于系统的固有频率时,可以将两周期激励项转换为单一周期激励项的函数形式. 将该单一周期激励项视为慢变参数,给出了不同激励幅值下快子系统随慢变参数变化的平衡曲线及其分岔行为的演化过程,重点考察了3种较为典型的不同外激励幅值下系统的簇发振荡行为. 结合转换相图,揭示了各种簇发振荡的产生机理. 系统的轨线会随慢变参数的变化,沿相应的稳定平衡曲线运动,而fold分岔会导致轨迹在不同稳定平衡曲线上的跳跃,产生相应的激发态. 激发态可以用从分岔点向相应稳定平衡曲线的暂态过程来近似,其振荡幅值的变化和振荡频率也可用相应平衡点特征值的实部和虚部来描述,并进一步指出随着外激励幅值的改变,导致系统参与簇发振荡的平衡曲线分岔点越多,其相应簇发振荡吸引子的结构也越复杂.
    Abstract: The complicated behaviors as well as the bifurcation mechanism of the dynamical systems with different time scales have become one of the hot subjects at home and abroad, since they often behave in bursting attractors characterized by the combinations between large-amplitude oscillations and small-amplitude oscillations. Since the slow-fast analysis was employed to investigate the mechanism of the special forms of movements, a lot of results related to the bursting oscillations in autonomous systems with two scales in time domain have been obtained. Recently, based on the transformed phase portraits, different types of bursting oscillations as well as the mechanism in the vector fields with single periodic excitation have been presented. However, few works has been published related to the systems with multiple periodic excitations, the dynamics of which still remains an open problem. The main purpose of the manuscript is to explore effect of the multiple scales in such systems. As a example, based on a relatively simple four-dimensional Chua’s circuit, by introducing two periodically changed electric sources, when the two exciting frequencies are strictly resonant, both of which are far less than the natural frequency of the system, a dynamical model with scales under two periodic excitations is established. Note that the combination of the two exciting terms can be transformed as a function of a periodic term with single frequency, which can be regarded as a slow-varying parameter. The equilibrium branches as well as the associated bifurcations with the variation of the slow-varying parameter can be derived by employing the characteristics analysis of the equilibrium points. It is found that the distribution of the equilibrium branches as well as the bifurcation details may changed with the variation the amplitudes of the excitations, which may influence the attractors of the whole dynamical system. Three typical cases corresponding to the different situations of the equilibrium branches are considered, in which different forms of bursting oscillations are observed. Based on the transformed phase portraits, the bifurcation mechanism of the bursting oscillations has been presented. It is found that the trajectory may move almost strictly along one of the stable equilibrium branches, while jumping to another stable equilibrium branch may occur at the fold bifurcation points, the transient process of which leads to the large-amplitude oscillations corresponding to spiking states. Furthermore, it is pointed out that when more fold bifurcation points involve the behaviors of the system, more complicated bursting oscillations may appear.
  • [1] Alexandrov DV, Bashkirtseva IA, Ryashko LB.Excitability, mixedmode oscillations and transition to chaos in a stochastic ice ages model.Physica D, 2017, 343(15): 28-37
    [2] 王帅, 于文浩, 陈巨辉等. 鼓泡流化床中流动特性的多尺度数值模拟. 力学学报, 2016, 48(1): 585-592
    [2] (Wang Shuai, Yu Wenhao, Chen Juhui, et al.Multi-scale simulation on hydrodynamic characteristics in bubbling fluidized bed.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 585-592 (in Chinese))
    [3] Pereda E, Dm DLC, Mañas S, et al.Topography of EEG complexity in human neonates: effect of the postmenstrual age and the sleep state.Neuroscience Letters, 2006, 394(2): 152-157
    [4] Bi QS.The mechanism of bursting phenomena in Belousov- Zhabotinsky (BZ) chemical reaction with multiple time scale.Sci China-Technol Sci, 2010, 53(1): 748-760
    [5] 卓小翔,刘辉,楚锡华等. 非均质材料动力分析的广义多尺度有限元法. 力学学报, 2016, 48(2): 378-386
    [5] (Zhuo Xiaoxiang, Liu Hui, Chu Xihua, et al.A generalized multiscale finite element method for dynamic analysis of heteroge-neous material.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 378-386 (in Chinese))
    [6] Naidu DS.Analysis of non-dimensional forms of singular perturbation structures for hypersonic vehicles.Acta Astronaut, 2010, 66(1): 577-586
    [7] 唐宇帆,任树伟,辛锋先等. MEMS 系统中微平板结构声振耦合性能研究. 力学学报, 2016, 48(4): 907-916
    [7] (Tang Yufan, Ren Shuwei, Xin Fengxian, et al.Scale effect analysis for the vibroacoustic performance of a micro-plate.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 907-916 (in Chinese))
    [8] Sánchez AD, Izús GG, Dell’Erba MG, et al. A reduced gradient description of stochastic-resonant spatiotemporal patterns in a FitzHugh-Nagumo ring with electric inhibitory coupling.Phys Lett A, 2014, 378(22-23): 1579-1583
    [9] 陈章耀, 张晓芳, 毕勤胜. 周期激励下Hartley 模型的簇发及其分岔机制. 力学学报, 2010, 42(4): 765-773
    [9] (Chen Zhangyao, Zhang Xiaofang, Bi Qinsheng.Bursting phenomena as well as the bifurcation mechanism in periodically excited Hartley model.Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 765-773 (in Chinese))
    [10] Butera Jr RJ, Rinzel J, Smith JC.Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons.J Neurophysiol, 1999, 82(1): 398-415
    [11] Cardin PT, Moraes JRD, Silva PRD.Persistence of periodic orbits with sliding or sewing by singular perturbation.Journal of Mathematical Analysis and Applications, 2015, 423(2): 1166-1182
    [12] Cao J, Huang DS, Qu Y.Global robust stability of recurrent neural networks.Chaos Solitons and Fractals, 2004, 23(1): 221-229
    [13] Bear SM, Erneux T, Rinzel J.The slow passage through a Hopf bifurcation: delay, memory effects, and resonance.SIAM J Appl Math, 1989, 49(1): 55-71
    [14] Ferrari FAS, Viana RL, Gomez F, et al.Macroscopic bursting in physiological networks: node or network property.New Journal of Physics, 2015, 17: 055024
    [15] Rulkov NF.Regularization of synchronized chaotic bursts.Phys Rev Lett, 2001,86(1): 183-186
    [16] Wagenaar DA, Pine J, Potter SM.An extremely rich repertoire ofbursting patterns during the development of cortical cultures.BMC Neurosci, 2006, 7(1): 1-18
    [17] Izhikevich EM, Hoppensteadt F.Classfication of bursting mapping.Int J Bifurcat Chaos, 2004, 14(11): 3847-3854
    [18] Simo H, Woafo P.Bursting oscillations in electromechanical systems.Mechanics Research Communications, 2011, 38(8): 537-547
    [19] Samoilenko AM, Parasyuk IO, Repeta BV.Dynamical bifurcation of multifrequency oscillations in a fast-slow system.Ukrainian Mathematical Journal, 2015, 67(7): 1008-1037
    [20] Kingni ST, Keuninckx L, Woafo P, et al.Dissipative chaos,Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation. Nonlinear Dyn, 2013, 73(1-2): 1111-1123
    [21] Tanaka H, Ushio T.Design of bursting in a two-dimensional discrete-time neuron model.Phys Lett A, 2004, 350(1): 228-231
    [22] 张正娣,毕勤胜. 自激作用下洛伦兹振子的簇发现象及其分岔机制. 中国科学: 物理学力学天文学, 2013, 43(4): 511-517
    [22] (Zhang Zhendi, Bi Qinsheng.Bursting phenomenon as well as the bifurcation mechanism of self-excited Lorenz system.Sci Sin-Phys Mech Astron, 2013, 43(4): 511-517 (in Chinese))
    [23] 吴天一,陈小可, 张正娣等. 非对称型簇发振荡吸引子结构及其机理分析. 物理学报, 2017, 66(11): 35-45
    [23] (Wu Tianyi, Chen Xiaoke, Zhang Zhengdi, et al.Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms.Acta Phys Sin, 2017, 66(11): 35-45 (in Chinese))
    [24] 张晓芳,陈小可,毕勤胜. 快慢耦合振子的张驰簇发及其非光滑分岔机制. 力学学报,2012, 44(1): 576-583
    [24] (Zhang Xiaofang, Chen Xiaoke, Bi Qinsheng.Relaxation bursting of a fast-slow coupled oscillation as well as the mechanism of non-smooth bifurcation.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 576-583 (in Chinese))
    [25] Han XJ, Bi QS.Slow passage through canard explosion and mixed mode oscillations in the forced Van der Pol’s equation.Nonlinear Dyn, 2012, 68(1-2): 275-283
    [26] 邢雅清,陈小可,张正娣等. 多平衡态下簇发振荡产生机理及吸引子结构分析. 物理学报, 2016, 65(9): 1-9
    [26] (Xing Yaqing, Chen Xiaoke, Zhang Zhengdi, et al.Mechanism of bursting oscillations with multiple equilibrium states and the analysis of the structures of the attractors Structures of the asymmetrical bursting oscillation attractors and their bifurcation mechanisms.Acta Phys Sin, 2016, 65(9): 1-9 (in Chinese))
    [27] Mkaouar H, Boubaker O.Chaos synchronization for master slave piecewise linear systems: Application to Chua’s circuit.Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 1292-1302
    [28] Dai H, Yue X, Xie D, et al.Chaos and chaotic transients in an aeroelastic system.Journal of Sound and Vibration, 2014, 333(26): 7267-7285
计量
  • 文章访问数:  1246
  • HTML全文浏览量:  164
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-12
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回