EI、Scopus 收录
中文核心期刊

扩展腔对方波型微混合器混合性能的影响研究

刘赵淼, 王文凯, 逄燕

刘赵淼, 王文凯, 逄燕. 扩展腔对方波型微混合器混合性能的影响研究[J]. 力学学报, 2018, 50(2): 254-262. DOI: 10.6052/0459-1879-17-291
引用本文: 刘赵淼, 王文凯, 逄燕. 扩展腔对方波型微混合器混合性能的影响研究[J]. 力学学报, 2018, 50(2): 254-262. DOI: 10.6052/0459-1879-17-291
Liu Zhaomiao, Wang Wenkai, Pang Yan. INFLUENCE OF EXPANDED CAVITY ON MIXING PERFORMANCE OF SQUARE-WAVE MICRO-MIXER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 254-262. DOI: 10.6052/0459-1879-17-291
Citation: Liu Zhaomiao, Wang Wenkai, Pang Yan. INFLUENCE OF EXPANDED CAVITY ON MIXING PERFORMANCE OF SQUARE-WAVE MICRO-MIXER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 254-262. DOI: 10.6052/0459-1879-17-291
刘赵淼, 王文凯, 逄燕. 扩展腔对方波型微混合器混合性能的影响研究[J]. 力学学报, 2018, 50(2): 254-262. CSTR: 32045.14.0459-1879-17-291
引用本文: 刘赵淼, 王文凯, 逄燕. 扩展腔对方波型微混合器混合性能的影响研究[J]. 力学学报, 2018, 50(2): 254-262. CSTR: 32045.14.0459-1879-17-291
Liu Zhaomiao, Wang Wenkai, Pang Yan. INFLUENCE OF EXPANDED CAVITY ON MIXING PERFORMANCE OF SQUARE-WAVE MICRO-MIXER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 254-262. CSTR: 32045.14.0459-1879-17-291
Citation: Liu Zhaomiao, Wang Wenkai, Pang Yan. INFLUENCE OF EXPANDED CAVITY ON MIXING PERFORMANCE OF SQUARE-WAVE MICRO-MIXER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 254-262. CSTR: 32045.14.0459-1879-17-291

扩展腔对方波型微混合器混合性能的影响研究

详细信息
    作者简介:

    null

    作者简介:2) 刘赵淼,教授,主要研究方向:微流体力学、计算流体力学、流固耦合分析. E-mail: lzm@bjut.edu.cn

  • 中图分类号: O35;

INFLUENCE OF EXPANDED CAVITY ON MIXING PERFORMANCE OF SQUARE-WAVE MICRO-MIXER

  • 摘要: 微混合器凭借节约试剂、混合强度高和易于集成等优点,在材料合成、医药制备和生化检测等领域中具有广泛的应用. 为了进一步提高混合性能,保证混合过程的安全性及生化反应结果的准确性,设计了一种带扩展腔的新型方波型微混合器. 在综合考虑混合强度和压降的前提下,通过实验研究和数值模拟分析了窄缝宽度、窄缝长度和扩展腔高度对微混合器混合性能的影响并得到了不同雷诺数Re条件下的最优结构参数. 与方波型微混合器的混合性能进行比较,发现Re=20时,带扩展腔的方波型微混合器的混合强度更高,其中Re时两者混合强度相差最多,可达12%. 在相同Re下,带扩展腔的方波型微混合器的压降要低于方波型微混合器. 对带扩展腔的方波型微混合器进行内部流场分析,发现扩展腔结构能在流体层流状态的基础上引入涡流,使通道中流体的流动状态发生改变、对流增强,进而混合性能提高.
    Abstract: Micro-mixer has great application potentials in many fields such as material synthesis, pharmaceutical preparation and biochemical detection due to its advantages of saving reagents, higher mixing index and easy integration. In order to further improve the mixing performance, to ensure the safety of the mixing process and the accuracy of the biochemical reaction results, a new square wave micro-mixer with extended cavity was designed. Under the premise of considering the mixing index and pressure drop, the effects of the width of slit, the length of slit, and the height of extended cavity on the mixing performance of micro-mixer were analyzed by experiment and simulation. The optimal structural parameters were achieved under different Reynolds number (Re=20). Compared with the square-wave micro-mixer, the mixing strength of the square-wave micro-mixer with the extended cavity is higher when Re. Moreover, the gap of mixing index between two square-wave micro-mixer reaches maximum, up to 12%, at Re<10. Under the same Reynolds number, the pressure drop of the square-wave micro-mixer with the extended cavity is lower than that of the square-wave micro-mixer. Meanwhile, the analysis for the internal flow field of the square-wave micro-mixer with the extended cavity was carried out. It is found that the eddy current is introduced on the basis of the laminar flow state of the fluid because of the existence of the extended cavity structure, which means the change of the flow state of the fluid in the channel and the enhancement of convection effect, thus the mixing performance is further improved.
  • [1] Lee C, Wang W, Liu C, et al.Passive mixers in microfluidic systems: A review.Chemical Engineering Journal, 2016, 288: 146-160
    [2] 李健, 夏国栋. 布置成涡结构微混合器内的流动与混合特性. 化工学报, 2013, 64(7): 2328-2335
    [2] (Li Jian, Xia Guodong.Fluid flow and mixing characteristics in micromixer with vortex-generated structures.CIESC Journal, 2013, 64(7): 2328-2335 (in Chinese))
    [3] 李艺凡, 夏国栋, 王军. 结构参数对布置窄缝和挡板的微混合器内流体流动和混合的影响. 化工学报, 2015, 66(10): 3857-3865
    [3] (Li Yifan, Xia Guodong, Wang Jun.Effect of structural parameters on fluid flow and mixing characteristics in micromixer with gaps and baffles.CIESC Journal, 2015, 66(10): 3857-3865 (in Chinese))
    [4] 任郑玲, 卢晨阳, 王安杰等. T型微混合器合成Cu{Invalid MML}O纳米颗粒. 化工学报, 2017, 68(6): 2611-2617
    [4] (Ren Zhengling, Lu Chenyang, Wang Anjie, et al.Synthesis of Cu{Invalid MML}O nanoparticles in T-shaped micro-mixer.CIESC Journal, 2017, 68(6): 2611-2617 (in Chinese))
    [5] 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响. 力学学报, 2016, 48(4): 867-876
    [5] (Liu Zhaomiao, Yang Yang.Influence of geometry configurations on the microdroplets in flow focusing microfluidics.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867-876 (in Chinese))
    [6] 罗振兵,孙明波,张攀峰.第九届全国流体力学青年研讨会报告综述.力学学报, 2016, 48(2): 511-517
    [6] (Luo Zhenbing, Sun Mingbo, Zhang Panfeng.Review of the Ninth National Symposium on Fluid Mechanics for Young Scholars.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 511-517 (in Chinese))
    [7] Li Y, Xu F, Liu C, et al.A novel microfluidic mixer based on dual-hydrodynamic focusing for interrogating the kinetics of DNA-protein interaction.The Analyst, 2013, 138(16): 4475
    [8] 姜枫, 刘国君, 杨志刚等. 微混合器的研究现状. 微纳电子技术, 2016, 53(3): 166-176
    [8] (Jiang Feng, Liu Guojun, Yang Zhigang, et al.Research status in micro-mixers.Micronanoelectronic Technology, 2016, 53(3): 166-176 (in Chinese))
    [9] 李战华, 吴健康, 胡国庆等. 微流控芯片中的流体流动. 北京: 科学出版社, 2012
    [9] (Li Zhanhua, Wu Jiankang, Hu Guoqing, et al.Fluid Flow in Microfluidic Chips. Beijing: Science Press, 2012 (in Chinese))
    [10] Hardt S, Drese KS, Hessel V, et al.Passive micromixers for applications in the microreactor and {Invalid MML}TAS fields.Microfluidics & Nanofluidics, 2005, 1(2): 108-118
    [11] 苏祥龙, 许文祥, 陈文. 基于分形导数对非牛顿流体层流的数值研究. 力学学报, 2017, 49(5): 1020-1028
    [11] (Su Xianglong, Xu Wenxiang, Chen Wen.Numerical study for laminar flow of non-Newtonian fluid based on fractal derivative.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1020-1028
    [12] Xia G, Li J, Tian X, et al.Analysis of flow and mixing characteristics of planar asymmetric split-and-recombine (P-SAR) micromixers with fan-shaped cavities.Industrial & Engineering Chemistry Research, 2012, 51(22): 7816-7827
    [13] Wu C, Tsai R.Fluid mixing via multidirectional vortices in converging-diverging meandering microchannels with semi-elliptical side walls.Chemical Engineering Journal, 2013, 217: 320-328
    [14] Li J, Xia G, Li Y.Numerical and experimental analyses of planar asymmetric split-and-recombine micromixer with dislocation sub-channels.Journal of Chemical Technology & Biotechnology, 2013, 88(9): 1757-1765
    [15] Sabotin I, Tristo G, Junkar M, et al.Two-step design protocol for patterned groove micromixers.Chemical Engineering Research & Design, 2013, 91(5): 778-788
    [16] 肖水云, 李鸣, 杨大勇. T型微混合器内混合强化的数值模拟. 应用数学和力学, 2016, 37(3): 301-310
    [16] (Xiao Shuiyun, Li Ming, Yang Dayong.Numerical Simulation of Mixing Enhancement in T-shaped Micromixers.Applied Mathematics and Mechanics, 2016, 37(3): 301-310 (in Chinese))
    [17] 付强, 鲁聪达. 典型被动微混合器对雷诺数变化的敏感度研究. 化学工程, 2016 (6): 18-21
    [17] (Fu Qiang, Lu Congda.Influence of typical passive micromixer on sensitivity of changing Re.Chemical Engineering, 2016 (6): 18-21 (in Chinese))
    [18] Santana HS, Tortola DS, Jr. Silva JL, et al.Biodiesel synthesis in micromixer with static elements.Energy Conversion & Management, 2017, 141(SI): 28-39
    [19] Wong SH, Ward M, Wharton CW.Micro T-mixer as a rapid mixing micromixer.Sensors & Actuators B Chemical, 2004, 100(3): 359-379
    [20] 毛罕平, 施杰, 杨宁等. 纸质被动式农药微混合器混合特性试验. 农业机械学报, 2016, 47(7): 73-79
    [20] (Mao Hanping, Shi Jie, Yang Ning, et al.Mixing characteristics experiment of paper-based passive micro-mixer for mixing pesticide.Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 73-79 (in Chinese))
    [21] Hsieh S, Lin J, Chen J.Mixing efficiency of Y-type micromixers with different angles.International Journal of Heat & Fluid Flow, 2013, 44: 130-139
    [22] Chen X, Li T.A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel.Chemical Engineering Journal, 2017, 313: 1406-1414
    [23] Mengeaud V, Josserand J, Girault HH.Mixing processes in a zigzag microchannel: Finite element simulations and optical study.Analytical Chemistry, 2002, 74(16): 4279-4286
    [24] Hossain S, Ansari MA, Kim K.Evaluation of the mixing performance of three passive micromixers.Chemical Engineering Journal, 2009, 150(2-3): 492-501
    [25] Chen X, Li T, Zeng H, et al.Numerical and experimental investigation on micromixers with serpentine microchannels.International Journal of Heat & Mass Transfer, 2016, 98: 131-140
    [26] Chen X, Li T, Hu Z.A novel research on serpentine microchannels of passive micromixers.Microsyst Technol, 2017, 23: 2649-2656
    [27] 刘贵亚, 张宇, 李民权等. 不同拓扑衍生结构微混合器的仿真与分析. 微纳电子技术, 2015, 52(10): 633-638
    [27] (Liu Guiya, Zhang Yu, Li Minquan, et al.Simulation and analysis of the microfluidics mixers with different topology structures.Micronanoelectronic Technology, 2015, 52(10): 633-638 (in Chinese))
    [28] Pradeep A, Raveendran J, Ramachandran T, et al.Computational simulation and fabrication of smooth edged passive micromixers with alternately varying diameter for efficient mixing.Microelectronic Engineering, 2016, 165: 32-40
    [29] Johnson TJ, Ross D, Locascio LE. Rapid Microfluidic Mixing.Analytical Chemistry, 2002, 74(1): 45-51
    [30] Alam A, Kim K. Analysis of mixing in a curved microchannel with rectangular grooves. Chemical Engineering Journal, 2012, 181-182: 708-716
    [31] 陈方璐, 常洪龙, 洪水金等. 一种基于多重涡流新型微混合器的设计与实验. 传感器与微系统, 2013, 32(9): 118-121
    [31] (Chen Fanglu, Chang Honglong, Hong Shuijin, et al.Design and experiment for a novel micromixer based on multiple vortex.Transducer and Microsystem Technologies, 2013, 32(9): 118-121 (in Chinese))
    [32] Shih TR, Chung CK.A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range.Microfluidics & Nanofluidics, 2008, 5(2): 175-183
    [33] Hossain S, Husain A, Kim K.Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls.Chemical Engineering Journal, 2010, 162(2): 730-737
    [34] Tsai R, Wu C.An efficient micromixer based on multidirectional vortices due to baffles and channel curvature.Biomicrofluidics, 2011, 5(1): 14103
    [35] Afzal A, Kim K.Passive split and recombination micromixer with convergent-divergent walls.Chemical Engineering Journal, 2012, 203: 182-192
    [36] Wang R, Lijin B, Shi D, et al.Investigation on the splitting-merging passive micromixer based on Baker’s transformation.Sensors & Actuators B Chemical, 2017, 249: 395-404
计量
  • 文章访问数:  1345
  • HTML全文浏览量:  252
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回