EI、Scopus 收录
中文核心期刊

激波主导流动下壁板的热气动弹性稳定性理论分析

叶柳青, 叶正寅

叶柳青, 叶正寅. 激波主导流动下壁板的热气动弹性稳定性理论分析[J]. 力学学报, 2018, 50(2): 221-232. DOI: 10.6052/0459-1879-17-242
引用本文: 叶柳青, 叶正寅. 激波主导流动下壁板的热气动弹性稳定性理论分析[J]. 力学学报, 2018, 50(2): 221-232. DOI: 10.6052/0459-1879-17-242
Ye Liuqing, Ye Zhengyin. AEROELASTIC STABILITY ANALYSIS OF HEATED FLEXIBLE PANEL IN SHOCK-DOMINATED FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 221-232. DOI: 10.6052/0459-1879-17-242
Citation: Ye Liuqing, Ye Zhengyin. AEROELASTIC STABILITY ANALYSIS OF HEATED FLEXIBLE PANEL IN SHOCK-DOMINATED FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 221-232. DOI: 10.6052/0459-1879-17-242
叶柳青, 叶正寅. 激波主导流动下壁板的热气动弹性稳定性理论分析[J]. 力学学报, 2018, 50(2): 221-232. CSTR: 32045.14.0459-1879-17-242
引用本文: 叶柳青, 叶正寅. 激波主导流动下壁板的热气动弹性稳定性理论分析[J]. 力学学报, 2018, 50(2): 221-232. CSTR: 32045.14.0459-1879-17-242
Ye Liuqing, Ye Zhengyin. AEROELASTIC STABILITY ANALYSIS OF HEATED FLEXIBLE PANEL IN SHOCK-DOMINATED FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 221-232. CSTR: 32045.14.0459-1879-17-242
Citation: Ye Liuqing, Ye Zhengyin. AEROELASTIC STABILITY ANALYSIS OF HEATED FLEXIBLE PANEL IN SHOCK-DOMINATED FLOWS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 221-232. CSTR: 32045.14.0459-1879-17-242

激波主导流动下壁板的热气动弹性稳定性理论分析

详细信息
    作者简介:

    null

    作者简介:2)叶柳青,硕士研究生,主要研究方向:高超声速气动弹性. E-mail: yeliuqing0512@126.com

  • 中图分类号: O322,V215.3;

AEROELASTIC STABILITY ANALYSIS OF HEATED FLEXIBLE PANEL IN SHOCK-DOMINATED FLOWS

  • 摘要: 针对激波主导流动下弹性壁板的热气动弹性稳定性分析问题,建立了基于当地活塞流理论的分析模型,并用数值仿真方法来验证其正确性. 首先基于Hamilton原理和Von-Karman大变形理论,建立壁板的热气动弹性运动方程,其中假设壁板受热后温度均匀分布,激波前后区域的气动力模型采用当地一阶活塞流理论;利用Galerkin方法将具有连续参数系统的偏微分颤振方程离散为有限个自由度的常微分方程;基于李雅普诺夫间接法将非线性颤振方程组在平衡位置处进行线化,再用Routh-Hurwits判据来判断线性系统的稳定性,从而来推论出非线性颤振系统的气动弹性稳定性. 在时域中采用龙格--库塔法对非线性颤振方程进行数值积分,得到壁板非线性颤振响应的时间历程,与理论分析结果进行对比. 研究结果表明,壁板受到斜激波冲击时,更容易发生颤振失稳,并且激波强度越大,极限环幅值和频率越大;激波主导流场中的壁板失稳边界不同于传统单纯超声速气流中壁板颤振的失稳边界;只有在斜激波前后不同的动压值都满足颤振稳定性边界的条件下,壁板才可能保持其气动弹性稳定性.
    Abstract: In order to analyze the aeroelastic stability of heated flexible panel in shock-dominated flows, a systematic theoretical analysis model is established, and then test its correctness by the numerical simulation method. First of all, based on Hamilton principle and Von-Karman large deflection plate theory, the coupled partial differential governing equations are established with thermal effect based on quasi-steady thermal stress theory. Local first-order piston theory is employed in the region before and after shock waves. The Galerkin discrete method is employed to truncate the partial differential equations into a set of ordinary differential equations. The nonlinear flutter equation is linearized in the equilibrium position based on Lyapunov indirect method,and then Routh-Hurwits criterion is employed to analyze stability of the linear system. Finally, aeroelastic stability of the nonlinear flutter system is obtained. In order to verify the correctness of theoretical results, the nonlinear flutter equations are solved by the fourth-order Runge-Kutta numerical integration method to obtain time history of panel response. The results show that stability of the panel is reduced in the presence of the oblique shock. In other words, the heated panel becomes aeroelastically unstable at relatively small flight aerodynamic pressure. And the LCO amplitude and frequency are observed to increase with shock strength; the stability boundaries of heated flexible panel in shock-dominated flows are distinct from that in regular supersonic flows; only if the non-dimensional dynamic pressure upstream of the shock impingement location and the non-dimensional dynamic pressure downstream of the shock impingement location of the panel satisfy critical condition of flutter stability, will the heated panel be aeroelastically stable.
  • [1] Xiao DY, Tian JY, Wei Z, et al.Damping effect on supersonic panel flutter of composite plate with viscoelastic mid-layer.Composite Structures, 2016, 137: 105-113
    [2] 杨超,李国曙,万志强. 气动热--气动弹性双向耦合的高超声速曲面壁板颤振分析方法. 中国科学:技术科学, 2012, 42(4): 369-377
    [2] (Yang Chao, Li Guoshu, Wan Zhiqiang.Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter.Sci China Tech Sci, 2012, 42(4): 369-377 (in Chinese))
    [3] Jordan PF.The physical nature of panel flutter, Aero Digest, 1956: 34-38
    [4] Dowell EH.Nonlinear oscillations of a fluttering plate. AIAA Journal, 1966, 4: 1267-1275
    [5] Dowell EH.Nonlinear oscillations of a fluttering plate.AIAA Journal, 1967, 5: 1856-1862
    [6] Dowell EH.Panel flutter: A review of the aeroelastic stability of plates and shells.AIAA Journal, 1970, 8(3): 385-399
    [7] Cheng GF, Mei C.Finite element modal formulation for hypersonic panel flutter analysis with thermal effects.AIAA Journal, 2004, 42(4): 687-695
    [8] Bolotin VV, Petrovsky AV.Secondary bifurcations and global instability of an aeroelastic non-linear system in the divergence domain.Journal of Sound and Vibration, 1966, 191(3): 431-451
    [9] 夏巍,杨智春. 超音速气流中受热壁板的稳定性分析. 力学学报, 2007, 39(5):602-609
    [9] (Xia Wei, Yang Zhichun.Stability analysis of heated panel in supersonic flows.Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(5): 602-609 (in Chinese))
    [10] Epureanu BI, Tang LS, Paidoussis MP.Coherent structures and their influence on the dynamics of aeroelastic panels.International Journal of Non-Linear Mechanics, 2004, 39: 977-991
    [11] Shiryayev OV, Slater JC.Aeroelastic system identification using the minimum model error method.Journal of Guidance, Control and Dynamics, 2006, 29(4): 936-943
    [12] Olson MD.Some flutter solutions using finite elements.AIAA Journal, 1970, 8(4): 747-752
    [13] Gray FE. Mei C.Finite element method for large-amplitude two-dimensional panel flutter at hypersonic speeds.AIAA Journal, 1991, 29: 411-488
    [14] Azzouz MS, Mei C.Nonlinear flutter of cylindrical panels under yawed supersonic flow using finite elements. AIAA 2005-2373, 2005
    [15] 夏巍,杨智春,谷迎松. 超声速气流中受热壁板二次失稳型颤振. 航空学报, 2009, 30(10): 1851-1856
    [15] (Xia Wei, Yang Zhichun, Gu Yingsong.Secondary instability flutter of heated panels in supersonic airflow. Acta Aeronautica Et Astronautica Sinica, 2009, 30(10): 1851-1856 (in Chinese))
    [16] 杨智春,夏巍,张蕊丽. 温度分布对复合材料壁板颤振特性的影响. 宇航学报, 2010, 31(3): 850-854
    [16] (Yang Zhichun, Xia Wei, Zhang Ruili.Effects of temperature distribution on panel flutter of composite plate. Journal of Astronautics, 2010, 31(3): 850-854 (in Chinese))
    [17] 叶献辉,杨翊仁,肖艳. 热环境下三维壁板大气紊流动力响应分析. 工程力学, 2009, 26(6): 233-237
    [17] (Ye Xianhui, Yang Yiren, Xiao Yan.Dynamic response of three-dimensional panel with thermal effect to atmosphere turbulence.Engineering Mechanics, 2009, 26(6): 233-237 (in Chinese))
    [18] 赵海,曹登庆,龙钢. 基于动态吸振器的高超声速复合材料壁板颤振抑制及其优化设计. 航空动力学报, 2013, 28(10): 2202-2208
    [18] (Zhao Hai, Cao Dengqing, Long Gang.Suppression of supersonic flutter of laminated composite panel using dynamic absorber device and its optimal design.Journal of Aerospace Power, 2013, 28(10): 2202-2208 (in Chinese))
    [19] 周建,杨智春,谷迎松. 两面受气动载荷的壁板热弹性稳定性分析. 中国科学:技术科学, 2012, 42(12): 1416-1422
    [19] (Zhou Jian, Yang Zhichun, Gu Yingsong.Aeroelastic stability analysis of heated panel with aerodynamic loading on both surface.Sci China Tech Sci, 2012, 42(12): 1416-1422 (in Chinese))
    [20] 叶坤,叶正寅, 屈展等. 高超声速舵面热气动弹性不确定性及全局灵敏度分析. 力学学报, 2016, 48(2): 278-289
    [20] (Ye Kun, Ye Zhengyin, Qu Zhan, et al.Uncertainty and global sensitivity analysis of hypersonic control surface aerothermoelastic.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 278-289 (in Chinese))
    [21] 刘成,叶正寅,叶坤. 转捩位置对全动舵面热气动弹性的影响. 力学学报, 2017, 49(4): 802-810
    [21] (Liu Cheng, Ye Zhengyin, Ye Kun.The effect of transition location on aerothermoelasticity of a hypersonic in all-movable centrol surface.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 802-810 (in Chinese))
    [22] 张子健,刘云峰,姜宗林. 振动激发对高超声速气动力/热影响. 力学学报, 2017, 49(3): 616-626
    [22] (Zhang Zijian, Liu Yunfeng, Jiang Zonglin.Effect of vibration excitation on hypersonic aerodynamic and aerothermodynamic.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 616-626 (in Chinese))
    [23] Brouwer KR, Crowell AR, McNamara JJ. Rapid prediction of unsteady eoelastic loadsin shock-dominated flows//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015
    [24] Visbal MR.On the interaction of an oblique shock with a flexible Panel.Journal of Fluids and Structures, 2012, 30: 219-225
    [25] Visbal MR.Viscous and inviscid interactions of an oblique shock with a flexible panel.Journal of Fluids and Structures, 2014, 48: 27-45
    [26] Yao C, Zhang GH, Xu FC, et al.Influence of wall vibration on the aero performance of transonic diffuser//22nd AIAA Computational Fluid Dynamics Conference, 2015
  • 期刊类型引用(8)

    1. 刘昊,瞿叶高,孟光. 斜激波冲击下层合壁板-空腔系统流-固-声耦合动力学分析. 力学学报. 2024(06): 1752-1761 . 本站查看
    2. 叶柳青,叶正寅. 振荡激波作用下壁板的非线性动力学特性分析. 振动工程学报. 2022(02): 464-474 . 百度学术
    3. 叶柳青,叶正寅,洪正,叶坤. 振荡激波作用下受热壁板主共振特性分析. 振动与冲击. 2022(09): 41-50 . 百度学术
    4. 张家铭,杨执钧,黄锐. 基于非线性状态空间辨识的气动弹性模型降阶. 力学学报. 2020(01): 150-161 . 本站查看
    5. 张艳梅,刘敏. 钢框架加劲肋壁板结构的受力失稳性能研究. 地震工程学报. 2020(01): 32-37 . 百度学术
    6. 李映坤,陈雄,许进升. 基于流固耦合的斜激波冲击作用下曲壁板气动弹性分析. 航空动力学报. 2020(04): 783-792 . 百度学术
    7. 王梓伊,张伟伟,刘磊. 高超声速飞行器热气动弹性仿真计算方法综述. 气体物理. 2020(06): 1-15 . 百度学术
    8. 刘艮,张伟. 亚音速气流中复合材料悬臂板的非线性振动响应研究. 力学学报. 2019(03): 912-921 . 本站查看

    其他类型引用(7)

计量
  • 文章访问数:  1328
  • HTML全文浏览量:  188
  • PDF下载量:  456
  • 被引次数: 15
出版历程
  • 收稿日期:  2017-07-03
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回