EI、Scopus 收录
中文核心期刊

振动驱动移动机器人直线运动的滑移分岔

陈祺, 占雄, 徐鉴

陈祺, 占雄, 徐鉴. 振动驱动移动机器人直线运动的滑移分岔[J]. 力学学报, 2016, 48(4): 792-803. DOI: 10.6052/0459-1879-16-157
引用本文: 陈祺, 占雄, 徐鉴. 振动驱动移动机器人直线运动的滑移分岔[J]. 力学学报, 2016, 48(4): 792-803. DOI: 10.6052/0459-1879-16-157
Chen Qi, Zhan Xiong, Xu Jian. SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803. DOI: 10.6052/0459-1879-16-157
Citation: Chen Qi, Zhan Xiong, Xu Jian. SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803. DOI: 10.6052/0459-1879-16-157
陈祺, 占雄, 徐鉴. 振动驱动移动机器人直线运动的滑移分岔[J]. 力学学报, 2016, 48(4): 792-803. CSTR: 32045.14.0459-1879-16-157
引用本文: 陈祺, 占雄, 徐鉴. 振动驱动移动机器人直线运动的滑移分岔[J]. 力学学报, 2016, 48(4): 792-803. CSTR: 32045.14.0459-1879-16-157
Chen Qi, Zhan Xiong, Xu Jian. SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803. CSTR: 32045.14.0459-1879-16-157
Citation: Chen Qi, Zhan Xiong, Xu Jian. SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 792-803. CSTR: 32045.14.0459-1879-16-157

振动驱动移动机器人直线运动的滑移分岔

基金项目: 国家自然科学基金资助项目(11272236).
详细信息
    通讯作者:

    徐鉴,教授,主要研究方向:非线性动力学.E-mail:xujian@tongji.edu.cn

  • 中图分类号: O313

SLIDING BIFURCATIONS OF RECTILINEAR MOTION OF A THREE-PHASE VIBRATION-DRIVEN SYSTEM SUBJECT TO COULOMB DRY FRICTION

  • 摘要: 近年来,随着移动型机器人设计技术水平的不断提高,其运动形式日趋多样. 借助于仿生学的思想,模仿蚯蚓等动物的蠕动成为不少机器人设计者所追求的目标. 为了实现这一目标,学者们提出并研究了振动驱动系统. 本文研究了各向同性干摩擦下,单模块三相振动驱动系统的粘滑运动. 考虑到库伦干摩擦力的不连续性,振动驱动系统属于Filippov 系统. 基于此,运用Filippov 滑移分岔理论,分析了振动驱动系统不同的粘滑运动情况. 根据驱动参数的不同,系统运动的滑移区域被分成4 种基本情形. 对这些情形分类讨论,得到系统的6 种运动情况. 然后对这6 种运动情况进行归纳,最终得出系统一共存在4 种不同的粘滑运动,而且也解析地给出了发生这4 种粘滑运动的分岔条件. 分岔条件包含系统的3 个驱动参数,通过变化这些参数,得到了系统运动的分岔图. 借助分岔图,详细分析了随着驱动参数的变化,系统如何实现不同粘滑运动类型之间的切换,并从分岔角度给出了相应的物理解释. 最后,通过数值方法直接求解原运动方程,数值解法得到的4 种运动图像与理论分析一致,验证了系统运动分岔研究的正确性.
    Abstract: In recent years, mobile robots' locomotion becomes diversified assisted by the continuous development of technologies in designing them. Inspired from bionics, earthworms' peristalsis becomes an object that quite a few robot designers want their robots to imitate. To this end, vibration-driven system has been put forward and researched by scholars. In this paper, the stick-slip motion of a one-module vibration-driven system moving on isotropic rough surface is studied. In consideration of the discontinuity caused by dry friction, the system considered here is of Filippov type. Based on sliding bifurcation theory in Filippov system, different types of stick-slip motions are studied. According to the values of driving parameters, 4 situations with different sliding regions can be seen. By analyzing these situations one by one, 6 kinds of motions can be achieved. By combining these motions, 4 different stick-slip motion types are finally concluded and conditions for judging occurrence of them are also derived analytically from the view point of sliding bifurcation. In the bifurcation conditions, there are 3 bifurcation parameters which can be changed in drawing bifurcation graphs. Assisted by these bifurcation graphs, detailed analysis is given about how stick-slip motion types change from one to another when parameters change and physical explanations from the perspective of bifurcation theory are also given. At last, the original differential motion equation is solved in a numerical way and one can see that 4 different stick-slip motion types derived numerically correspond with the former analytical results, which verifies the correctness of the bifurcation analysis in this paper well.
  • 1 Fang HB, Wang CH, Li SY, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot. Multibody System Dynamics, 2015, 35(2): 153-177
    2 Kano T, Kobayashi R, Ishiguro A, et al. Decentralized control scheme for adaptive earthworm locomotion using continuummodel-based analysis. Advanced Robotics, 2014, 28(3): 197-202
    3 Glozman D, Hassidov N, Senesh M, et al. A self-propelled inflatable earthworm-like endoscope actuated by single supply line. IEEE Transactions on Biomedical Engineering, 2010, 57(6): 1264-1272
    4 Marvi H, Bridges J, Hu DL. Snakes mimic earthworms: propulsion using rectilinear travelling waves. Journal of the Royal Society Interface, 2013, 10(84): 20130188
    5 Wang KD, Yan GZ, Ma GY, et al. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Annals of Biomedical Engineering, 2009, 37(1): 210-221
    6 Wang KD, Yan GZ. An earthworm-like microrobot for colonoscopy. Biomedical Instrument and Technology, 2006, 40(6): 471-478
    7 Chernousko FL. The optimum rectilinear motion of a two-mass system. Journal of Applied Mathematics and Mechanics, 2002, 66(1): 1-7
    8 Chernousko FL. Analysis and optimization of the motion of a body controlled by means of a movable internal mass. Journal of Applied Mathematics and Mechanics, 2006, 70(6): 819-842
    9 Fang HB, Xu J. Dynamics of a three-module vibration-driven system with non-symmetric Coulomb's dry friction. Multibody System Dynamics, 2012, 27(4): 455-485
    10 Fang HB, Xu J. Stiffck-slip effect in a vibration-driven system with dry friction: sliding bifurcations and optimization. Journal of Applied Mechanics, 2014, 81(5): 051001
    11 Chernousko FL. On the optimal motion of a body with an internal mass in a resistive medium. Journal of Vibration and Control, 2008, 14(1-2): 197-208
    12 Chernousko FL. Dynamics of a body controlled by internal motions. IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, Springer Netherlands, 2007
    13 Fang HB, Xu J. Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium. Journal of Sound and Vibration, 2011, 330(16): 4002-4018
    14 Fang HB, Xu J. Controlled motion of a two-module vibration-driven system induced by internal acceleration-controlled masses. Archive of Applied Mechanics, 2012, 82(4): 461-477
    15 Li HY, Furuta K, Chernousko FL. Motion generation of the capsubot using internal force and static friction. 45th IEEE Conference on Decision and Control, IEEE, 2006
    16 Huda MN, Yu HN, Wane SO. Self-contained capsubot propulsion mechanism. International Journal of Automation and Computing, 2011, 8(3): 348-356
    17 Bolotnik NN, Chernousko FL, Figurina TY. Control of Vibration-Driven Systems Moving in Resistive Media. Motion and Vibration Control, Springer Netherlands, 2009: 31-40
    18 Galvanetto U. Some discontinuous bifurcations in a two-block stick–slip system. Journal of Sound and Vibration, 2001, 248(4): 653-669
    19 Chernousko FL. Optimal periodic motions of two-mass systems in resistive media. IFAC Proceedings Volumes on Periodic Control Systems, 2007, 40(14): 13-19
    20 Fang HB, Xu J. Dynamic analysis and optimization of a three-phase control mode of a mobile system with an internal mass. Journal of Vibration and Control, 2011, 17(1): 19-26
    21 Bolotnik NN, Figurina TY. Optimal control of the rectilinear motion of a rigid body on a rough plane by means of the motion of two internal masses. Journal of Applied Mathematics and Mechanics, 2008, 72(2): 126-135
    22 Li HY, Furuta K, Chernousko FL. A pendulum-driven cart via internal force and static friction. In: Proceedings of 2005 International Conference on Physics and Control. IEEE, 2005
    23 Liu Y, Wiercigroch M, Pavlovskaia E, et al. Modelling of a vibroimpact capsule system. International Journal of Mechanical Sciences, 2013, 66: 2-11
    24 Liu Y, Pavlovskaia E, Hendry D, et al. Vibro-impact responses of capsule system with various friction models. International Journal of Mechanical Sciences, 2013, 72: 39-54
    25 Liu Y, Pavlovskaia E, Wiercigroch M, et al. Forward and backward motion control of a vibro-impact capsule system. International Journal of Non-Linear Mechanics, 2015, 70: 30-46
    26 Guardia M, Hogan SJ, Seara TM. An analytical approach to codimension-2 sliding bifurcations in the dry-friction oscillator. SIAM Journal on Applied Dynamical Systems, 2010, 9(3): 769-798
    27 Kowalczyk P, Piiroinen PT. Two-parameter sliding bifurcations of periodic solutions in a dry-friction oscillator. Physica D: Nonlinear Phenomena, 2008, 237(8): 1053-1073
    28 Bernardo MD, Kowalczyk P, Nordmark A. Sliding bifurcations: a novel mechanism for the sudden onset of chaos in dry friction oscillators. International Journal of Bifurcation and Chaos, 2003, 13(10): 2935-2948
    29 Bernardo MD, Budd CJ, Champneys AR, et al. Piecewise-smooth Dynamical Systems: Theory and Applications. Springer Science & Business Media, 2008
    30 Filippov AF, Arscott FM. Differential Equations with Discontinuous Righthand Sides. Springer Science & Business Media, 1988
  • 期刊类型引用(9)

    1. 钱佳伟,孙秀婷,徐鉴,方虹斌. 一类新型仿生起竖结构设计及其动力学分析. 力学学报. 2021(07): 2023-2036 . 本站查看
    2. 张文静,牛江川,申永军,温少芳. 基于分数阶磁流变液阻尼器模型的车辆悬架组合控制. 力学学报. 2021(07): 2037-2046 . 本站查看
    3. 葛亚威,陈少敏,毕勤胜. 含有阈值控制策略Hindmarsh-Rose系统的簇发振荡分析. 力学季刊. 2021(04): 641-651 . 百度学术
    4. 刘旭鹏,郜志英,臧勇,张立元. 蛇形机器人蜿蜒运动的摩擦机理及推进条件. 机械工程学报. 2021(21): 189-201 . 百度学术
    5. 朱诗慧,周震,吕敬,王琪. 三相驱动下非光滑振动驱动系统的动力学分析. 力学学报. 2020(06): 1755-1764 . 本站查看
    6. 李得洋,丁旺才,卫晓娟,丁杰. 单自由度含干摩擦碰振系统相邻周期运动转迁规律分析. 振动与冲击. 2020(22): 50-59 . 百度学术
    7. 贾祥宇,吴禹. 动力学与生命科学的交叉研究进展综述. 动力学与控制学报. 2017(03): 279-288 . 百度学术
    8. 张敏,徐鉴. 振动驱动移动系统平面避障运动分析. 力学学报. 2017(02): 397-409 . 本站查看
    9. 王二虎,丁旺才,李国芳,吴少培. 一类冲击掘进系统的粘滑运动分析. 兰州交通大学学报. 2017(06): 13-19 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1283
  • HTML全文浏览量:  190
  • PDF下载量:  714
  • 被引次数: 16
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回